Jianguang Wang, Jiaqi Fang, Zhijie Weng, Liping Nan, Yunfeng Chen, Junkuan Shan, Feng Chen and Junjian Liu
{"title":"Advanced development of conductive biomaterials for enhanced peripheral nerve regeneration: a review","authors":"Jianguang Wang, Jiaqi Fang, Zhijie Weng, Liping Nan, Yunfeng Chen, Junkuan Shan, Feng Chen and Junjian Liu","doi":"10.1039/D5RA01107H","DOIUrl":null,"url":null,"abstract":"<p >Peripheral nerve injury (PNI), as a major cause of disability worldwide, makes it difficult to achieve effective repair and regeneration. Including autologous nerve transplantation, traditional therapies are restricted by surgical intricacy, donor scarcity, and inconsistent recovery effects. As to nerve guidance conduits (NGCs), conductive materials have brought novel pathways for PNI repair. Such materials boost nerve regeneration <em>via</em> electrical stimulation and bring key mechanical stability and biophysical signaling. This review summarizes the progress in conductive materials for PNI therapy while emphasizing their functions in electrical stimulation (ES), bioelectric signal transmission, and cell behavior guidance, as well as revealing the design and function needs of nerve conduits. Additionally, our review highlights the demand for follow-up studies to accentuate material optimization and improve real-time electrical signal supervision. Accordingly, this research is insightful and contributes to developing PNI repair. This results in more efficacious therapies and enhanced outcomes.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 17","pages":" 12997-13009"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01107h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01107h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve injury (PNI), as a major cause of disability worldwide, makes it difficult to achieve effective repair and regeneration. Including autologous nerve transplantation, traditional therapies are restricted by surgical intricacy, donor scarcity, and inconsistent recovery effects. As to nerve guidance conduits (NGCs), conductive materials have brought novel pathways for PNI repair. Such materials boost nerve regeneration via electrical stimulation and bring key mechanical stability and biophysical signaling. This review summarizes the progress in conductive materials for PNI therapy while emphasizing their functions in electrical stimulation (ES), bioelectric signal transmission, and cell behavior guidance, as well as revealing the design and function needs of nerve conduits. Additionally, our review highlights the demand for follow-up studies to accentuate material optimization and improve real-time electrical signal supervision. Accordingly, this research is insightful and contributes to developing PNI repair. This results in more efficacious therapies and enhanced outcomes.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.