Exploring CO2 activation mechanisms with triphenylphosphine derivatives: insights from energy decomposition and deformation density analyses†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-04-22 DOI:10.1039/D5RA00804B
Hossein Sabet-Sarvestani, Shadi Bolourian, Fereshteh Hosseini, Mohammad Javad Seddighi, Hamed Hosseini and Hossein Eshghi
{"title":"Exploring CO2 activation mechanisms with triphenylphosphine derivatives: insights from energy decomposition and deformation density analyses†","authors":"Hossein Sabet-Sarvestani, Shadi Bolourian, Fereshteh Hosseini, Mohammad Javad Seddighi, Hamed Hosseini and Hossein Eshghi","doi":"10.1039/D5RA00804B","DOIUrl":null,"url":null,"abstract":"<p >This study focuses on the reaction mechanisms involving triphenylphosphine (PPh<small><sub>3</sub></small>) derivatives, benzyne, and CO<small><sub>2</sub></small>, giving mechanistic insights into two competing pathways: Path <strong>a</strong>, which involves direct C–P bond formation, and Path <strong>b</strong>, which progresses <em>via</em> a [2 + 2] cycloaddition. Comprehensive computational analysis by energy decomposition analysis (EDA) and deformation density insights was employed to elucidate the electronic and steric factors influencing the reactivity and selectivity of PPh<small><sub>3</sub></small> derivatives. The results reveal that Path <strong>b</strong> is energetically and kinetically favored. In Path <strong>a</strong>, substantial repulsive interactions (Δ<em>E</em><small><sub>rep</sub></small>), especially for electron-withdrawing substituents, hinder C–P bond formation, making this pathway unfavorable, while Path <strong>b</strong> benefits from compensatory effects between interaction energies, with electron-releasing <em>para</em>-substituents, such as <strong>NHMe</strong> and <strong>OMe</strong>, increasing stabilization by enhancing Δ<em>E</em><small><sub>orb</sub></small> contributions. Substituents in <em>meta</em> positions show greater distortion energies (Δ<em>E</em><small><sub>dist</sub></small>), which limit their stabilizing effects compared to <em>para</em>-substituents. The deformation density analysis of transition states (<strong>TS1(b)</strong> and <strong>TS2(b)</strong>) emphasizes the crucial role of Pauli deformation (Δ<em>ρ</em><small><sup>Pauli</sup></small>) and orbital deformation (Δ<em>ρ</em><small><sup>Orb</sup></small>) in modulating stability. <em>Para</em>-substituents exhibit stronger electronic effects, reducing Δ<em>E</em><small><sub>int</sub></small> more effectively than <em>meta</em>-substituents, which increase Δ<em>E</em><small><sub>dist</sub></small>. This positional dependence underscores the importance of substituent design in optimizing reactivity.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 17","pages":" 12917-12930"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00804b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00804b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the reaction mechanisms involving triphenylphosphine (PPh3) derivatives, benzyne, and CO2, giving mechanistic insights into two competing pathways: Path a, which involves direct C–P bond formation, and Path b, which progresses via a [2 + 2] cycloaddition. Comprehensive computational analysis by energy decomposition analysis (EDA) and deformation density insights was employed to elucidate the electronic and steric factors influencing the reactivity and selectivity of PPh3 derivatives. The results reveal that Path b is energetically and kinetically favored. In Path a, substantial repulsive interactions (ΔErep), especially for electron-withdrawing substituents, hinder C–P bond formation, making this pathway unfavorable, while Path b benefits from compensatory effects between interaction energies, with electron-releasing para-substituents, such as NHMe and OMe, increasing stabilization by enhancing ΔEorb contributions. Substituents in meta positions show greater distortion energies (ΔEdist), which limit their stabilizing effects compared to para-substituents. The deformation density analysis of transition states (TS1(b) and TS2(b)) emphasizes the crucial role of Pauli deformation (ΔρPauli) and orbital deformation (ΔρOrb) in modulating stability. Para-substituents exhibit stronger electronic effects, reducing ΔEint more effectively than meta-substituents, which increase ΔEdist. This positional dependence underscores the importance of substituent design in optimizing reactivity.

探索二氧化碳活化机制与三苯基膦衍生物:从能量分解和变形密度分析的见解
本研究重点研究了涉及三苯基膦(PPh3)衍生物、苯和二氧化碳的反应机制,并对两种相互竞争的反应途径进行了机理分析:途径a涉及直接形成C-P键,途径b通过[2 + 2]环加成进行。通过能量分解分析(EDA)和变形密度分析的综合计算分析,阐明了影响PPh3衍生物反应性和选择性的电子和空间因素。结果表明,路径b在能量和动力学上都是有利的。在路径a中,大量的排斥性相互作用(ΔErep),特别是吸电子取代基,阻碍了C-P键的形成,使得该路径不利,而路径b受益于相互作用能之间的补偿效应,释放电子的对取代基,如NHMe和OMe,通过增加ΔEorb贡献来增加稳定性。取代基在元位置表现出更大的畸变能(ΔEdist),这限制了它们与对取代基相比的稳定作用。过渡态(TS1(b)和TS2(b))的变形密度分析强调泡利变形(ΔρPauli)和轨道变形(ΔρOrb)在调制稳定性中的关键作用。对取代基表现出更强的电子效应,比间取代基更有效地减少ΔEint,增加ΔEdist。这种位置依赖性强调了取代基设计在优化反应性中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信