Mark John Castillo, Jumi Kang, Jinkyu Lim, Minok Park and Kyueui Lee
{"title":"Polyphenol-based fire-resistant coatings: a bio-inspired solution for forest fire prevention†","authors":"Mark John Castillo, Jumi Kang, Jinkyu Lim, Minok Park and Kyueui Lee","doi":"10.1039/D4GC06191H","DOIUrl":null,"url":null,"abstract":"<p >The bark of hardwood trees contains abundant polyphenols, which can rapidly transform into a graphite layer that acts as a thermal barrier, minimizing fire damage. Inspired by this natural fire resistance mechanism, we developed an eco-friendly, cost-effective fire-retardant coating system for forest fire prevention. Comprising only pyrogallol (PG) and polyethyleneimine (PEI), the system forms a polyphenolic layer through oxygen-mediated oxidative crosslinking when exposed to air. This method uses water as the sole solvent and requires no additional catalysts, allowing easy, material-independent application <em>via</em> spray-coating. Heat resistance tests showed that the PG–PEI coating improved the wood's inherent fire resistance by approximately threefold, attributed to the rapid coating conversion into a graphite layer at high temperatures, as confirmed by X-ray photoelectron and Raman spectroscopies. Furthermore, a 70-day colorimetric analysis under simulated weathering conditions exposure demonstrated the coating's durability against environmental stresses. The PG–PEI coating also preserved wood's natural functionality, supporting tree health, as evidenced by the high survival rates of the treated trees. These findings suggest the PG–PEI coating is a promising solution for mitigating forest fire damage while maintaining eco-friendliness and practicality.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 17","pages":" 4573-4586"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc06191h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc06191h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The bark of hardwood trees contains abundant polyphenols, which can rapidly transform into a graphite layer that acts as a thermal barrier, minimizing fire damage. Inspired by this natural fire resistance mechanism, we developed an eco-friendly, cost-effective fire-retardant coating system for forest fire prevention. Comprising only pyrogallol (PG) and polyethyleneimine (PEI), the system forms a polyphenolic layer through oxygen-mediated oxidative crosslinking when exposed to air. This method uses water as the sole solvent and requires no additional catalysts, allowing easy, material-independent application via spray-coating. Heat resistance tests showed that the PG–PEI coating improved the wood's inherent fire resistance by approximately threefold, attributed to the rapid coating conversion into a graphite layer at high temperatures, as confirmed by X-ray photoelectron and Raman spectroscopies. Furthermore, a 70-day colorimetric analysis under simulated weathering conditions exposure demonstrated the coating's durability against environmental stresses. The PG–PEI coating also preserved wood's natural functionality, supporting tree health, as evidenced by the high survival rates of the treated trees. These findings suggest the PG–PEI coating is a promising solution for mitigating forest fire damage while maintaining eco-friendliness and practicality.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.