Amr Osama;Giuseppe Marco Tina;Gaetano Mannino;Alessio Vincenzo Cucuzza;Andrea Canino;Fabrizio Bizzarri
{"title":"Experimental and Simulated Performance Evaluation of Bifacial Photovoltaic Floating System With a Horizontal Single-Axial Tracker","authors":"Amr Osama;Giuseppe Marco Tina;Gaetano Mannino;Alessio Vincenzo Cucuzza;Andrea Canino;Fabrizio Bizzarri","doi":"10.1109/JPHOTOV.2025.3551505","DOIUrl":null,"url":null,"abstract":"The rapid expansion of photovoltaics is driven by significant reduction in costs. However, given the surface requirements for photovoltaic development, utilizing water surfaces for floating photovoltaic (FPV) systems presents a promising solution. To enhance the cost-effectiveness of these systems, bifacial modules and tracking systems can be employed. While numerous experimental studies have evaluated the performance of fixed-configuration FPVs, floating tracking configurations remain underexplored. In addition, various simulation tools offer insights into different configurations, but their different assumptions often yield inconsistent results. This study focuses on the experimental evaluation of a horizontal axis tracking bifacial FPV (HT-bFPV) system. Over one year, the HT-bFPV system was monitored at the FPV test bed of “Enel Innovation Hub & Lab” in Catania, Italy. The experimental results were compared with simulated outcomes using two software tools, to assess their precision in calculating the HT-bFPV performances. The results reveal that the module temperature of the HT-bFPV system is 3 °C to 6 °C lower than the temperatures calculated by System Advisor Model and Photovoltaic system software, respectively. The yearly reference yield of 2139 kWh/kW produced a final yield of 1801 kWh/kW. The yearly performance ratio of the HT-bFPV system was 0.86, which improved by 1.8% when adjusted for temperature. The simulation results closely matched the experimental data, validating the system's performance. Furthermore, it was confirmed that the HT-bFPV system can produce up to 13.3% more energy with more potential in sites with higher latitudes compared with a similar fixed system.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"484-491"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10944767/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid expansion of photovoltaics is driven by significant reduction in costs. However, given the surface requirements for photovoltaic development, utilizing water surfaces for floating photovoltaic (FPV) systems presents a promising solution. To enhance the cost-effectiveness of these systems, bifacial modules and tracking systems can be employed. While numerous experimental studies have evaluated the performance of fixed-configuration FPVs, floating tracking configurations remain underexplored. In addition, various simulation tools offer insights into different configurations, but their different assumptions often yield inconsistent results. This study focuses on the experimental evaluation of a horizontal axis tracking bifacial FPV (HT-bFPV) system. Over one year, the HT-bFPV system was monitored at the FPV test bed of “Enel Innovation Hub & Lab” in Catania, Italy. The experimental results were compared with simulated outcomes using two software tools, to assess their precision in calculating the HT-bFPV performances. The results reveal that the module temperature of the HT-bFPV system is 3 °C to 6 °C lower than the temperatures calculated by System Advisor Model and Photovoltaic system software, respectively. The yearly reference yield of 2139 kWh/kW produced a final yield of 1801 kWh/kW. The yearly performance ratio of the HT-bFPV system was 0.86, which improved by 1.8% when adjusted for temperature. The simulation results closely matched the experimental data, validating the system's performance. Furthermore, it was confirmed that the HT-bFPV system can produce up to 13.3% more energy with more potential in sites with higher latitudes compared with a similar fixed system.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.