Asymmetric TiS1O1N2 site for interfacial polarization with improved NO3−-to-NH3 photoreduction†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-03-25 DOI:10.1039/D5GC00516G
Chunlei Xuan, Xihang Yan, Jun Xiong, Yao Wu, Gazi Hao, Wei Jiang and Jun Di
{"title":"Asymmetric TiS1O1N2 site for interfacial polarization with improved NO3−-to-NH3 photoreduction†","authors":"Chunlei Xuan, Xihang Yan, Jun Xiong, Yao Wu, Gazi Hao, Wei Jiang and Jun Di","doi":"10.1039/D5GC00516G","DOIUrl":null,"url":null,"abstract":"<p >The efficiency of photocatalytic ammonia production is limited by insufficient active sites and sluggish interfacial charge transfer in photocatalysts. To address this, a titano-oxide phthalocyanine monatomic layer (TiOPc) is modified onto the face-centered cubic structured CdIn<small><sub>2</sub></small>S<small><sub>4</sub></small><em>via</em> a hydrothermal process, significantly increasing the number of active sites. The close proximity of CdIn<small><sub>2</sub></small>S<small><sub>4</sub></small> and TiOPc creates a local interface with an asymmetric configuration, resulting in a pronounced potential difference and an electron-rich TiS<small><sub>1</sub></small>O<small><sub>1</sub></small>N<small><sub>2</sub></small> polarization site. This configuration facilitates rapid charge transport between the two materials through the interfacial Ti–S bond. Profiting from these properties, TiOPc/CdIn<small><sub>2</sub></small>S<small><sub>4</sub></small> delivers an impressive NH<small><sub>3</sub></small> formation rate of 2572.8 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> and an apparent quantum efficiency achieving 7.16%, 6.86%, 4.12%, 2.13%, 1.86% and 1.15% at 400, 450, 500, 550, 650 and 700 nm, respectively. This study offers a practical method for designing symmetry breaking structures and establishing strongly coupled interfaces to enhance photocatalytic performance.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 17","pages":" 4742-4749"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00516g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of photocatalytic ammonia production is limited by insufficient active sites and sluggish interfacial charge transfer in photocatalysts. To address this, a titano-oxide phthalocyanine monatomic layer (TiOPc) is modified onto the face-centered cubic structured CdIn2S4via a hydrothermal process, significantly increasing the number of active sites. The close proximity of CdIn2S4 and TiOPc creates a local interface with an asymmetric configuration, resulting in a pronounced potential difference and an electron-rich TiS1O1N2 polarization site. This configuration facilitates rapid charge transport between the two materials through the interfacial Ti–S bond. Profiting from these properties, TiOPc/CdIn2S4 delivers an impressive NH3 formation rate of 2572.8 μmol g−1 h−1 and an apparent quantum efficiency achieving 7.16%, 6.86%, 4.12%, 2.13%, 1.86% and 1.15% at 400, 450, 500, 550, 650 and 700 nm, respectively. This study offers a practical method for designing symmetry breaking structures and establishing strongly coupled interfaces to enhance photocatalytic performance.

改善NO3−到nh3光还原†的界面极化不对称tis101n2位点
光催化制氨的效率受到活性位点不足和界面电荷转移缓慢的限制。为了解决这个问题,通过水热工艺将氧化钛酞菁单原子层(TiOPc)修饰在面心立方结构cdin2s4上,显著增加了活性位点的数量。CdIn2S4和TiOPc的接近产生了一个具有不对称结构的局部界面,导致了明显的电位差和一个富电子的tis101n2极化位点。这种结构有助于通过界面Ti-S键在两种材料之间快速传输电荷。利用这些特性,TiOPc/CdIn2S4在400、450、500、550、650和700 nm处的NH3生成速率为2572.8 μmol g−1 h−1,量子效率分别达到7.16%、6.86%、4.12%、2.13%、1.86%和1.15%。该研究为设计对称破缺结构和建立强耦合界面以提高光催化性能提供了实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信