Mao Yang;Tian Peng;Wei Zhang;Xin Su;Chao Han;Fulin Fan
{"title":"Abnormal Data Identification and Reconstruction Based on Wind Speed Characteristics","authors":"Mao Yang;Tian Peng;Wei Zhang;Xin Su;Chao Han;Fulin Fan","doi":"10.17775/CSEEJPES.2022.06640","DOIUrl":null,"url":null,"abstract":"High availability of wind power data is the basis for wind power research, but there are a large number of abnormal data in actual collected data, which seriously affects analysis of wind power law and reduces prediction accuracy. Measured power data of wind farm are analyzed, influence of wind speed fluctuation characteristics on wind power is discussed, and abnormal points are identified for data of different wind types. The Cluster-Based Local Outlier Factor (CLOF) algorithm based on K-means is used to identify outlier abnormal points, and conditional constraints based on physical background are used to identify accumulation abnormal points. Reconstructed data segment is divided according to fluctuation of wind speed. The Bidirectional Gate Recurrent Unit (BiGRU) model with wind speed as input reconstructs fluctuation segment data, and bi-directional weighted random forest model reconstructs stationary segment data. Based on analysis of measured data of a wind farm, results show the method can effectively identify various abnormal data, and complete high-quality reconstruction of data, thereby improving accuracy of wind power prediction.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"612-622"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322710/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
High availability of wind power data is the basis for wind power research, but there are a large number of abnormal data in actual collected data, which seriously affects analysis of wind power law and reduces prediction accuracy. Measured power data of wind farm are analyzed, influence of wind speed fluctuation characteristics on wind power is discussed, and abnormal points are identified for data of different wind types. The Cluster-Based Local Outlier Factor (CLOF) algorithm based on K-means is used to identify outlier abnormal points, and conditional constraints based on physical background are used to identify accumulation abnormal points. Reconstructed data segment is divided according to fluctuation of wind speed. The Bidirectional Gate Recurrent Unit (BiGRU) model with wind speed as input reconstructs fluctuation segment data, and bi-directional weighted random forest model reconstructs stationary segment data. Based on analysis of measured data of a wind farm, results show the method can effectively identify various abnormal data, and complete high-quality reconstruction of data, thereby improving accuracy of wind power prediction.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.