Guard Ring Designs on Photovoltaic Energy Harvesting Silicon LSIs

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Takaya Sugiura;Yuta Watanabe
{"title":"Guard Ring Designs on Photovoltaic Energy Harvesting Silicon LSIs","authors":"Takaya Sugiura;Yuta Watanabe","doi":"10.1109/JPHOTOV.2025.3554315","DOIUrl":null,"url":null,"abstract":"This study explores strategies for safeguarding complementary metal–oxide–semiconductor (CMOS) field-effect-transistors (FETs) and PN-diode against bulk carrier contamination for energy harvesting applications. Energy harvesting processes can generate excessive carriers within the bulk region, which can penetrate the PMOS region from the p(P-Sub)/n(NWell) junction or <sc>nmosfet</small> without triple-well. To address this problem, this study investigated the effectiveness of a guard ring structure in protecting <sc>cmosfet</small>s and PN-diode by recombining carriers in their vicinities. The formation of unpassivated metals around <sc>cmosfet</small>s serves as a catalyst for carrier elimination before they penetrate the NWell region of a <sc>pmosfet</small> or the <sc>nmosfet</small> itself, thereby improving the <sc>off</small> states of both FETs. For a PN diode, the smaller off-current and lower threshold voltage obtained are advantageous for low-power consumption. However, such guard ring also degrades the performance of a photovoltaic (PV) cell by recombining the carriers needed by the cell to generate power. The experimental study of PV cells w/back-surface-field (BSF) and w/o BSF revealed that the former reduced the <inline-formula><tex-math>$V_{\\text{OC}}$</tex-math></inline-formula> of the cell with and that caution is required when forming a guard ring nearby the PV cell.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"420-426"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10953864/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores strategies for safeguarding complementary metal–oxide–semiconductor (CMOS) field-effect-transistors (FETs) and PN-diode against bulk carrier contamination for energy harvesting applications. Energy harvesting processes can generate excessive carriers within the bulk region, which can penetrate the PMOS region from the p(P-Sub)/n(NWell) junction or nmosfet without triple-well. To address this problem, this study investigated the effectiveness of a guard ring structure in protecting cmosfets and PN-diode by recombining carriers in their vicinities. The formation of unpassivated metals around cmosfets serves as a catalyst for carrier elimination before they penetrate the NWell region of a pmosfet or the nmosfet itself, thereby improving the off states of both FETs. For a PN diode, the smaller off-current and lower threshold voltage obtained are advantageous for low-power consumption. However, such guard ring also degrades the performance of a photovoltaic (PV) cell by recombining the carriers needed by the cell to generate power. The experimental study of PV cells w/back-surface-field (BSF) and w/o BSF revealed that the former reduced the $V_{\text{OC}}$ of the cell with and that caution is required when forming a guard ring nearby the PV cell.
光伏能量收集硅lsi的保护环设计
本研究探讨了在能量收集应用中保护互补金属氧化物半导体(CMOS)场效应晶体管(fet)和pn二极管免受散货船污染的策略。能量收集过程可以在体区产生过多的载流子,这些载流子可以在没有三阱的情况下从p(p - sub)/n(NWell)结或nmosfet穿透PMOS区。为了解决这个问题,本研究研究了保护环结构通过重组其附近的载流子来保护cmos和pn二极管的有效性。未钝化金属在fet周围形成,在它们穿透pmosfet的NWell区或nmosfet本身之前,作为载流子消除的催化剂,从而改善了两个fet的关闭状态。对于PN二极管来说,获得的较小的断流和较低的阈值电压有利于低功耗。然而,这种保护环也会通过重新组合电池发电所需的载流子而降低光伏电池的性能。对PV电池w/back-surface-field (BSF)和w/o BSF的实验研究表明,前者降低了电池的$V_{\text{OC}}$,并且在PV电池附近形成保护环时需要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信