Operation and Maintenance of Floating PV Systems: A Review

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Harsha Lakmal Walpita;Nathan Roosloot;Gaute Otnes;Bjørn Lupton Aarseth;Josefine Selj;Vilde Stueland Nysted;Erik Stensrud Marstein
{"title":"Operation and Maintenance of Floating PV Systems: A Review","authors":"Harsha Lakmal Walpita;Nathan Roosloot;Gaute Otnes;Bjørn Lupton Aarseth;Josefine Selj;Vilde Stueland Nysted;Erik Stensrud Marstein","doi":"10.1109/JPHOTOV.2025.3548322","DOIUrl":null,"url":null,"abstract":"Floating photovoltaic (FPV) systems are emerging as a promising solution to the scarcity of suitable land for ground-mounted solar PV (GPV) installations. By the end of 2022, global FPV capacity reached 5.7 GWp following a remarkable compound annual growth rate of approximately 87.5% from 2015 to 2022. This growth introduces a significant new frontier for operation and maintenance (O&M) practices in the solar industry. As the industry matures and more FPV assets come under operation, the need for innovative, efficient, and environmentally sensitive O&M strategies becomes imperative. This review presents the existing information on the O&M of FPV systems, highlighting the unique challenges and opportunities that set FPV systems apart from conventional GPV installations. Through an examination of recent advancements, best practices, and areas requiring further research, this study aims to provide valuable insights for optimizing the performance and sustainability of FPV systems.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"400-415"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938106/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Floating photovoltaic (FPV) systems are emerging as a promising solution to the scarcity of suitable land for ground-mounted solar PV (GPV) installations. By the end of 2022, global FPV capacity reached 5.7 GWp following a remarkable compound annual growth rate of approximately 87.5% from 2015 to 2022. This growth introduces a significant new frontier for operation and maintenance (O&M) practices in the solar industry. As the industry matures and more FPV assets come under operation, the need for innovative, efficient, and environmentally sensitive O&M strategies becomes imperative. This review presents the existing information on the O&M of FPV systems, highlighting the unique challenges and opportunities that set FPV systems apart from conventional GPV installations. Through an examination of recent advancements, best practices, and areas requiring further research, this study aims to provide valuable insights for optimizing the performance and sustainability of FPV systems.
浮动光伏系统的运行与维护:综述
浮动光伏(FPV)系统正在成为解决地面安装太阳能光伏(GPV)设备土地稀缺问题的一种前景广阔的解决方案。到 2022 年底,全球 FPV 容量将达到 5.7 GWp,从 2015 年到 2022 年的复合年增长率约为 87.5%。这一增长为太阳能行业的运营和维护(O&M)实践带来了一个重要的新领域。随着行业的成熟和更多 FPV 资产的投入使用,创新、高效和环保的运维策略势在必行。本综述介绍了有关 FPV 系统运行与维护的现有信息,强调了 FPV 系统有别于传统 GPV 安装的独特挑战和机遇。通过对最新进展、最佳实践和需要进一步研究的领域进行审查,本研究旨在为优化 FPV 系统的性能和可持续性提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信