Gravimetric Analysis of Edge Sealant Moisture Protection in a Floating Photovoltaic Application

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Nathan Roosloot;Dag Lindholm;Josefine H. Selj;Gaute Otnes
{"title":"Gravimetric Analysis of Edge Sealant Moisture Protection in a Floating Photovoltaic Application","authors":"Nathan Roosloot;Dag Lindholm;Josefine H. Selj;Gaute Otnes","doi":"10.1109/JPHOTOV.2025.3548762","DOIUrl":null,"url":null,"abstract":"Floating photovoltaic (FPV) modules may face a risk of increased moisture ingress due to their deployment on water surfaces. One way to mitigate this is by using impermeable front- and backsheets, with an edge sealant around the module perimeter. While a suitable sealant should have low bulk permeability, proper sealant application to avoid higher ingress channels at interfaces is crucial. Here, we report on the use of a gravimetric method as a simple way of evaluating moisture ingress through an edge sealant and of identifying application-related issues that lead to increased moisture ingress. The method uses multiple samples that closely mimic the sealant's intended application as part of an FPV design developed by the company Sunlit Sea. Supported by steady-state water vapor transmission rate measurements and finite-element modeling, the method is shown to be capable of determining the order of magnitude of the permeability of two different candidate sealant materials. Moreover, the method detected several application-related sealant failures that were not discernible through visual inspection. Finally, it uncovered potential issues of debonding of one of the sealants in immersion, highlighting a relevant yet understudied stressor for FPV modules.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"442-450"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937052/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Floating photovoltaic (FPV) modules may face a risk of increased moisture ingress due to their deployment on water surfaces. One way to mitigate this is by using impermeable front- and backsheets, with an edge sealant around the module perimeter. While a suitable sealant should have low bulk permeability, proper sealant application to avoid higher ingress channels at interfaces is crucial. Here, we report on the use of a gravimetric method as a simple way of evaluating moisture ingress through an edge sealant and of identifying application-related issues that lead to increased moisture ingress. The method uses multiple samples that closely mimic the sealant's intended application as part of an FPV design developed by the company Sunlit Sea. Supported by steady-state water vapor transmission rate measurements and finite-element modeling, the method is shown to be capable of determining the order of magnitude of the permeability of two different candidate sealant materials. Moreover, the method detected several application-related sealant failures that were not discernible through visual inspection. Finally, it uncovered potential issues of debonding of one of the sealants in immersion, highlighting a relevant yet understudied stressor for FPV modules.
浮式光伏应用中封边胶防潮的重量分析
浮动光伏(FPV)组件由于部署在水面上,可能面临水分进入增加的风险。缓解这种情况的一种方法是使用不透水的前后板,并在模块周围涂上边缘密封胶。虽然合适的密封胶应该具有低体积渗透性,但适当的密封胶应用以避免在界面处出现更高的入口通道是至关重要的。在这里,我们报告了使用重量法作为一种简单的方法来评估通过边缘密封胶的水分进入,并确定导致水分进入增加的应用相关问题。该方法使用多个样品来模拟密封胶的预期应用,这是Sunlit Sea公司开发的FPV设计的一部分。在稳态水蒸气透过率测量和有限元模型的支持下,该方法被证明能够确定两种不同候选密封材料的渗透率的数量级。此外,该方法还检测到一些与应用相关的密封胶故障,这些故障无法通过目测检测出来。最后,它揭示了一种密封剂在浸泡过程中脱落的潜在问题,突出了FPV模块的相关但尚未充分研究的应力源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信