Robust Output-Feedback MPC for Nonlinear Systems With Applications to Robotic Exploration

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Scott Brown;Mohammad Khajenejad;Aamodh Suresh;Sonia Martínez
{"title":"Robust Output-Feedback MPC for Nonlinear Systems With Applications to Robotic Exploration","authors":"Scott Brown;Mohammad Khajenejad;Aamodh Suresh;Sonia Martínez","doi":"10.1109/LCSYS.2025.3560531","DOIUrl":null,"url":null,"abstract":"This letter introduces a novel method for robust output-feedback model predictive control (MPC) for a class of nonlinear discrete-time systems. We propose a novel interval-valued predictor which, given an initial estimate of the state, produces intervals which are guaranteed to contain the future trajectory of the system. By parameterizing the control input with an initial stabilizing feedback term, we are able to reduce the width of the predicted state intervals compared to existing methods. We demonstrate this through a numerical comparison where we show that our controller performs better in the presence of large amounts of noise. Finally, we present a simulation study of a robot navigation scenario, where we incorporate a time-varying entropy term into the cost function in order to autonomously explore an uncertain area.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"90-95"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964256/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a novel method for robust output-feedback model predictive control (MPC) for a class of nonlinear discrete-time systems. We propose a novel interval-valued predictor which, given an initial estimate of the state, produces intervals which are guaranteed to contain the future trajectory of the system. By parameterizing the control input with an initial stabilizing feedback term, we are able to reduce the width of the predicted state intervals compared to existing methods. We demonstrate this through a numerical comparison where we show that our controller performs better in the presence of large amounts of noise. Finally, we present a simulation study of a robot navigation scenario, where we incorporate a time-varying entropy term into the cost function in order to autonomously explore an uncertain area.
非线性系统鲁棒输出反馈MPC及其在机器人探索中的应用
本文介绍了一类非线性离散系统的鲁棒输出反馈模型预测控制(MPC)的新方法。我们提出了一种新的区间值预测器,在给定状态的初始估计的情况下,产生保证包含系统未来轨迹的区间。通过初始稳定反馈项参数化控制输入,与现有方法相比,我们能够减小预测状态区间的宽度。我们通过数值比较证明了这一点,我们表明我们的控制器在存在大量噪声的情况下表现更好。最后,我们提出了一个机器人导航场景的仿真研究,其中我们将时变熵项纳入成本函数,以便自主探索不确定区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信