Global Calderón-Zygmund theory for fractional Laplacian type equations

IF 2.4 2区 数学 Q1 MATHEMATICS
Sun-Sig Byun , Kyeongbae Kim , Deepak Kumar
{"title":"Global Calderón-Zygmund theory for fractional Laplacian type equations","authors":"Sun-Sig Byun ,&nbsp;Kyeongbae Kim ,&nbsp;Deepak Kumar","doi":"10.1016/j.jde.2025.113319","DOIUrl":null,"url":null,"abstract":"<div><div>We establish several fine boundary regularity results of weak solutions to non-homogeneous <em>s</em>-fractional Laplacian type equations. In particular, we prove sharp Calderón-Zygmund type estimates of <span><math><mi>u</mi><mo>/</mo><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> depending on the regularity assumptions on the associated kernel coefficient including VMO, Dini continuity or the Hölder continuity, where <em>u</em> is a weak solution to such a nonlocal problem and <em>d</em> is the distance to the boundary function of a given domain. Our analysis is based on point-wise behaviors of maximal functions of <span><math><mi>u</mi><mo>/</mo><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113319"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003468","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish several fine boundary regularity results of weak solutions to non-homogeneous s-fractional Laplacian type equations. In particular, we prove sharp Calderón-Zygmund type estimates of u/ds depending on the regularity assumptions on the associated kernel coefficient including VMO, Dini continuity or the Hölder continuity, where u is a weak solution to such a nonlocal problem and d is the distance to the boundary function of a given domain. Our analysis is based on point-wise behaviors of maximal functions of u/ds.
分数阶拉普拉斯型方程的全局Calderón-Zygmund理论
建立了非齐次s分数阶拉普拉斯型方程弱解的几个精细边界正则性结果。特别地,我们根据相关核系数的正则性假设证明了u/ds的明显Calderón-Zygmund型估计,包括VMO, Dini连续性或Hölder连续性,其中u是此类非局部问题的弱解,d是给定区域的边界函数的距离。我们的分析是基于u/ds的极大函数的逐点行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信