A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Danilo Amigo , Felipe Lepe , Enrique Otárola , Gonzalo Rivera
{"title":"A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation","authors":"Danilo Amigo ,&nbsp;Felipe Lepe ,&nbsp;Enrique Otárola ,&nbsp;Gonzalo Rivera","doi":"10.1016/j.camwa.2025.04.015","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a virtual element method to solve a convective Brinkman-Forchheimer problem coupled with a heat equation. This coupled model may allow for thermal diffusion and viscosity as a function of temperature. Under standard discretization assumptions and appropriate assumptions on the data, we prove the well posedness of the proposed numerical scheme. We also derive optimal error estimates under suitable regularity assumptions for the solution and appropriate assumptions on the data. We conclude with a series of numerical tests performed on different families of meshes that complement the theoretical findings.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"191 ","pages":"Pages 1-23"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001609","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a virtual element method to solve a convective Brinkman-Forchheimer problem coupled with a heat equation. This coupled model may allow for thermal diffusion and viscosity as a function of temperature. Under standard discretization assumptions and appropriate assumptions on the data, we prove the well posedness of the proposed numerical scheme. We also derive optimal error estimates under suitable regularity assumptions for the solution and appropriate assumptions on the data. We conclude with a series of numerical tests performed on different families of meshes that complement the theoretical findings.
与热方程耦合的对流布林克曼-福克海默问题的虚拟元素法
我们提出了一种虚元法来求解带热方程的对流Brinkman-Forchheimer问题。这种耦合模型可以考虑热扩散和粘度作为温度的函数。在标准的离散化假设和对数据的适当假设下,证明了所提数值格式的适定性。在适当的正则性假设和对数据的适当假设下,给出了最优误差估计。最后,我们对不同的网格进行了一系列的数值测试,以补充理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信