M. Boumeester , E. Blom , T. Boerma , F. Lammertink , M.P. van den Heuvel , J. Dudink , M.J.N.L. Benders , E. Roze
{"title":"Structural brain network in relation to language in school-aged extremely preterm children: A diffusion tensor imaging study","authors":"M. Boumeester , E. Blom , T. Boerma , F. Lammertink , M.P. van den Heuvel , J. Dudink , M.J.N.L. Benders , E. Roze","doi":"10.1016/j.nicl.2025.103782","DOIUrl":null,"url":null,"abstract":"<div><div>Between 22 and 45 % of children born preterm experience difficulties with expressive and receptive language when they reach school age. Little is currently known about the neural mechanisms behind their linguistic performance. This study investigates the brain areas and white matter connections that form the structural language network in extremely preterm-born children who have reached school age. Structural brain connectivity was quantified using diffusion-weighted imaging (DWI) and tractography in <em>n</em> = 58 (62 % female) extremely preterm-born children aged 8–12 years. Language outcomes were assessed using the CELF-4-NL Recalling Sentences subtest. Language scores were below average in <em>n</em> = 13 (22 %) children. Language outcomes related significantly to a subnetwork of 16 brain regions (<em>p</em> = 0.012). The network comprised brain regions from the left hemisphere including the pars orbitalis, middle and superior frontal gyrus, frontal pole, pre- and postcentral gyrus, superior temporal gyrus, insula, caudate nucleus, thalamus, and putamen. In the right hemisphere, the anterior cingulate was part of the network. These findings suggest that extremely preterm children rely mostly on their left hemisphere during language processing, which is similar to typically developing children. However, they seem to use compensatory neural pathways that include brain areas right next to the areas typically involved in language processing. These areas include the pars orbitalis (adjacent to Broca’s area) and the putamen and caudate nucleus (adjacent to the limbic system). It is important to note that language difficulties were not necessarily related to brain injury around birth.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"46 ","pages":"Article 103782"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221315822500052X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Between 22 and 45 % of children born preterm experience difficulties with expressive and receptive language when they reach school age. Little is currently known about the neural mechanisms behind their linguistic performance. This study investigates the brain areas and white matter connections that form the structural language network in extremely preterm-born children who have reached school age. Structural brain connectivity was quantified using diffusion-weighted imaging (DWI) and tractography in n = 58 (62 % female) extremely preterm-born children aged 8–12 years. Language outcomes were assessed using the CELF-4-NL Recalling Sentences subtest. Language scores were below average in n = 13 (22 %) children. Language outcomes related significantly to a subnetwork of 16 brain regions (p = 0.012). The network comprised brain regions from the left hemisphere including the pars orbitalis, middle and superior frontal gyrus, frontal pole, pre- and postcentral gyrus, superior temporal gyrus, insula, caudate nucleus, thalamus, and putamen. In the right hemisphere, the anterior cingulate was part of the network. These findings suggest that extremely preterm children rely mostly on their left hemisphere during language processing, which is similar to typically developing children. However, they seem to use compensatory neural pathways that include brain areas right next to the areas typically involved in language processing. These areas include the pars orbitalis (adjacent to Broca’s area) and the putamen and caudate nucleus (adjacent to the limbic system). It is important to note that language difficulties were not necessarily related to brain injury around birth.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.