{"title":"Study of structural, optical, magnetic, and electrical properties of ZnFe2O4/GO nanocomposites","authors":"Pranav P. Naik, D. Sugania, Snehal Hasolkar","doi":"10.1016/j.mseb.2025.118338","DOIUrl":null,"url":null,"abstract":"<div><div>The work presented focuses on the dependence of structural, optical, magnetic, and electrical properties of ZnFe<sub>2</sub>O<sub>4</sub>/Graphene Oxide (GO)nanocomposites on GO concentration. The pure ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles and graphene oxide were synthesized using the hydrothermal method and modified Hummer’s method respectively. The ZnFe<sub>2</sub>O<sub>4</sub> /GO nanocomposites with GO percentages of 1.6 %, 2.5 %, and 3.6 % were prepared by adding 50 mg, 75 mg, and 100 mg of graphene oxide to zinc ferrite hydrothermal precursor. The structural investigations were done using X-ray diffraction (XRD), and Raman spectroscopy. The morphology of ZnFe<sub>2</sub>O<sub>4</sub> nano-powders and ZnFe<sub>2</sub>O<sub>4</sub> /GO nanocomposites were investigated using a scanning electron microscope. The energy band gap values of pure zinc ferrite and the nanocomposites were determined using UV–Vis spectroscopy. The magnetic and electrical property dependence on GO concentration was also investigated. Notably, observed alterations in electrical properties with increasing graphene oxide content, indicated that these nanocomposites may be used in electromagnetic interference shielding or sensor devices.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118338"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725003617","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The work presented focuses on the dependence of structural, optical, magnetic, and electrical properties of ZnFe2O4/Graphene Oxide (GO)nanocomposites on GO concentration. The pure ZnFe2O4 nanoparticles and graphene oxide were synthesized using the hydrothermal method and modified Hummer’s method respectively. The ZnFe2O4 /GO nanocomposites with GO percentages of 1.6 %, 2.5 %, and 3.6 % were prepared by adding 50 mg, 75 mg, and 100 mg of graphene oxide to zinc ferrite hydrothermal precursor. The structural investigations were done using X-ray diffraction (XRD), and Raman spectroscopy. The morphology of ZnFe2O4 nano-powders and ZnFe2O4 /GO nanocomposites were investigated using a scanning electron microscope. The energy band gap values of pure zinc ferrite and the nanocomposites were determined using UV–Vis spectroscopy. The magnetic and electrical property dependence on GO concentration was also investigated. Notably, observed alterations in electrical properties with increasing graphene oxide content, indicated that these nanocomposites may be used in electromagnetic interference shielding or sensor devices.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.