Numerical investigation of non-newtonian fluids in single screw extruders, Part I: Steady-state studies

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
T.M. Kousemaker , A.I. Vakis , F. Picchioni , P. Druetta
{"title":"Numerical investigation of non-newtonian fluids in single screw extruders, Part I: Steady-state studies","authors":"T.M. Kousemaker ,&nbsp;A.I. Vakis ,&nbsp;F. Picchioni ,&nbsp;P. Druetta","doi":"10.1016/j.cherd.2025.04.010","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer extrusion is considered one of the key processes in product processing nowadays, and its optimization is considered of the utmost importance in order to deliver proper products minimizing the use of resources. This paper presents the first part of a complete CFD study of a 3D single screw extruder model. In order to do so, mass and heat transfer coupled non-Newtonian fluid models are considered in a novel approach, where a shear-thinning/-thickening temperature-depending rheology correlation is modeled in COMSOL Multiphysics to reproduce the processing of polymer solutions. In this first part, a series of steady-state studies are presented, analyzing the system behavior and sensitivity to the different parameters involved but considering as well its dynamic behavior. Steady-state studies show that using only shear-thinning models underestimates crucial parameters such as pressure, viscosity and thermal profile due to differences in the velocity field and viscous stress tensor. Furthermore, the screw’s influence in the heat transfer process cannot be considered negligible, since a recirculation circuit is created, which helps heating up the polymer entering into the barrel. This work provides important steps in further advances of 3D extrusion modeling processes by considering and evaluating more detailed physics and accurate boundary conditions.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"218 ","pages":"Pages 25-39"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225001832","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer extrusion is considered one of the key processes in product processing nowadays, and its optimization is considered of the utmost importance in order to deliver proper products minimizing the use of resources. This paper presents the first part of a complete CFD study of a 3D single screw extruder model. In order to do so, mass and heat transfer coupled non-Newtonian fluid models are considered in a novel approach, where a shear-thinning/-thickening temperature-depending rheology correlation is modeled in COMSOL Multiphysics to reproduce the processing of polymer solutions. In this first part, a series of steady-state studies are presented, analyzing the system behavior and sensitivity to the different parameters involved but considering as well its dynamic behavior. Steady-state studies show that using only shear-thinning models underestimates crucial parameters such as pressure, viscosity and thermal profile due to differences in the velocity field and viscous stress tensor. Furthermore, the screw’s influence in the heat transfer process cannot be considered negligible, since a recirculation circuit is created, which helps heating up the polymer entering into the barrel. This work provides important steps in further advances of 3D extrusion modeling processes by considering and evaluating more detailed physics and accurate boundary conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信