{"title":"Three-dimensional digital elevation models reconstructed from stereoscopic image of platinum replica in sheared open osteoclasts","authors":"Toshitaka Akisaka","doi":"10.1016/j.micron.2025.103834","DOIUrl":null,"url":null,"abstract":"<div><div>Computer-generated microscopic images can be valuable tools for analyzing cell structure. We have used a computerized surface topography technique to convert platinum replica images into measurable 3D digital elevation model reconstructiondata. The commercially available Alicona MeX software can be successfully applied to the 3D reconstruction images of the platinum replicas, resulting in a series of digital elevation models in grayscale and coloured elevation maps in RGB mode of the selected area of interest. Here, we present accessible methods to analyze cell structures in sheared-open osteoclasts in 3D and at nanometre resolution, focusing on the podosome cytoskeleton, membrane-bound clathrin lattices, and surface topography. These structures on the surface of the ventral membrane appear to be highly characterized for their specific cellular functions. Extraction data from these reconstructed digital elevation models lead to the presentation of 3D information on some ultrastructural architectures on the ventral membrane, including the height of podosomes, the thickness of clathrin-coated structures and the non-coplanar surface of the flat clathrin lattices. In particular, we found that flat clathrin lattices appear on the curved surface of the basal part of the cell protrusions, or the non-coplanarity of their surface topography further indicates their morphological diversity. This new analytical approach provided a fast and easy way to reveal the ventral membrane surface structures in sheared open osteoclasts using high quality 3D reconstructed images.</div></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"195 ","pages":"Article 103834"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432825000526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-generated microscopic images can be valuable tools for analyzing cell structure. We have used a computerized surface topography technique to convert platinum replica images into measurable 3D digital elevation model reconstructiondata. The commercially available Alicona MeX software can be successfully applied to the 3D reconstruction images of the platinum replicas, resulting in a series of digital elevation models in grayscale and coloured elevation maps in RGB mode of the selected area of interest. Here, we present accessible methods to analyze cell structures in sheared-open osteoclasts in 3D and at nanometre resolution, focusing on the podosome cytoskeleton, membrane-bound clathrin lattices, and surface topography. These structures on the surface of the ventral membrane appear to be highly characterized for their specific cellular functions. Extraction data from these reconstructed digital elevation models lead to the presentation of 3D information on some ultrastructural architectures on the ventral membrane, including the height of podosomes, the thickness of clathrin-coated structures and the non-coplanar surface of the flat clathrin lattices. In particular, we found that flat clathrin lattices appear on the curved surface of the basal part of the cell protrusions, or the non-coplanarity of their surface topography further indicates their morphological diversity. This new analytical approach provided a fast and easy way to reveal the ventral membrane surface structures in sheared open osteoclasts using high quality 3D reconstructed images.
期刊介绍:
Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.