Federated optimal control of interconnected smart grids

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Haci Mehmet Guzey
{"title":"Federated optimal control of interconnected smart grids","authors":"Haci Mehmet Guzey","doi":"10.1016/j.ifacsc.2025.100311","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a <em>federated control framework</em> for the optimal regulation of interconnected smart grids. Unlike conventional centralized strategies, which require extensive data sharing from all nodes, our method preserves privacy by letting each local subsystem solve its own Riccati equation, generating control signals independently while sharing only minimal updates with a central aggregator. The aggregator then refines these partial solutions using the full system model, achieving near-optimal performance without disclosing sensitive local measurements. We also develop a <em>hybrid control</em> mechanism that dynamically switches trust factors for nodes under cyber attack, ensuring stability and resilience even in strongly coupled conditions.</div><div>Simulation results demonstrate that our federated approach yields cost performance comparable to a fully centralized LQR design, yet operates with significantly lower communication overhead. Moreover, the hybrid controller effectively mitigates cyber intrusions, preventing single-node compromises from destabilizing the entire grid. Hence, the proposed scheme addresses pressing challenges in modern smart grids – namely data privacy, cyber resilience, and scalability – while retaining the benefits of global coordination. In addition to linearized dynamics, future extensions will focus on <em>nonlinear</em> systems and advanced privacy-preserving protocols, paving the way for robust, next-generation energy networks.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"32 ","pages":"Article 100311"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a federated control framework for the optimal regulation of interconnected smart grids. Unlike conventional centralized strategies, which require extensive data sharing from all nodes, our method preserves privacy by letting each local subsystem solve its own Riccati equation, generating control signals independently while sharing only minimal updates with a central aggregator. The aggregator then refines these partial solutions using the full system model, achieving near-optimal performance without disclosing sensitive local measurements. We also develop a hybrid control mechanism that dynamically switches trust factors for nodes under cyber attack, ensuring stability and resilience even in strongly coupled conditions.
Simulation results demonstrate that our federated approach yields cost performance comparable to a fully centralized LQR design, yet operates with significantly lower communication overhead. Moreover, the hybrid controller effectively mitigates cyber intrusions, preventing single-node compromises from destabilizing the entire grid. Hence, the proposed scheme addresses pressing challenges in modern smart grids – namely data privacy, cyber resilience, and scalability – while retaining the benefits of global coordination. In addition to linearized dynamics, future extensions will focus on nonlinear systems and advanced privacy-preserving protocols, paving the way for robust, next-generation energy networks.
互联智能电网的联邦最优控制
本文提出了一种用于互联智能电网最优调节的联邦控制框架。与传统的集中式策略不同,传统的集中式策略需要从所有节点共享大量数据,我们的方法通过让每个本地子系统解决自己的Riccati方程来保护隐私,独立生成控制信号,同时仅与中央聚合器共享最小的更新。然后,聚合器使用完整的系统模型对这些部分解决方案进行细化,在不泄露敏感的局部测量值的情况下实现接近最优的性能。我们还开发了一种混合控制机制,可以在网络攻击下动态切换节点的信任因素,即使在强耦合条件下也能确保稳定性和弹性。仿真结果表明,我们的联合方法的性价比可与完全集中式LQR设计相媲美,但运行时通信开销明显降低。此外,混合控制器有效地减轻了网络入侵,防止单个节点的妥协破坏整个电网的稳定。因此,该方案解决了现代智能电网面临的紧迫挑战,即数据隐私、网络弹性和可扩展性,同时保留了全球协调的好处。除了线性化动态之外,未来的扩展将集中在非线性系统和先进的隐私保护协议上,为鲁棒的下一代能源网络铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信