Sam Zipper , Christopher T. Wheeler , Delaney M. Peterson , Stephen C. Cook , Sarah E. Godsey , Ken Aho
{"title":"STICr: An open-source package and workflow for stream temperature, intermittency, and conductivity (STIC) data","authors":"Sam Zipper , Christopher T. Wheeler , Delaney M. Peterson , Stephen C. Cook , Sarah E. Godsey , Ken Aho","doi":"10.1016/j.envsoft.2025.106484","DOIUrl":null,"url":null,"abstract":"<div><div>Non-perennial streams constitute over half the world's stream miles but are not commonly included in streamflow monitoring networks. As a result, Stream Temperature, Intermittency, and Conductivity (STIC) loggers are widely used for characterizing flow presence or absence in non-perennial streams. To facilitate ‘FAIR’ (findable, accessible, interoperable, and reusable) stream intermittency science, we present an open-source R package, STICr, for processing STIC logger data. STICr includes functions to tidy data, calibrate sensors, classify data into wet/dry readings, and perform quality checks and validation. We also show a reproducible STICr-based workflow for an interdisciplinary project spanning multiple watersheds, years, and research groups. In South Fork Kings Creek (Konza Prairie, Kansas, USA), we show that stream intermittency is driven by the balance between monthly precipitation inputs, seasonal evapotranspiration fluxes, and underlying geology. Overall, STICr can be used to create FAIR stream intermittency data and enable advances in hydrologic and ecosystem science.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"190 ","pages":"Article 106484"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001689","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-perennial streams constitute over half the world's stream miles but are not commonly included in streamflow monitoring networks. As a result, Stream Temperature, Intermittency, and Conductivity (STIC) loggers are widely used for characterizing flow presence or absence in non-perennial streams. To facilitate ‘FAIR’ (findable, accessible, interoperable, and reusable) stream intermittency science, we present an open-source R package, STICr, for processing STIC logger data. STICr includes functions to tidy data, calibrate sensors, classify data into wet/dry readings, and perform quality checks and validation. We also show a reproducible STICr-based workflow for an interdisciplinary project spanning multiple watersheds, years, and research groups. In South Fork Kings Creek (Konza Prairie, Kansas, USA), we show that stream intermittency is driven by the balance between monthly precipitation inputs, seasonal evapotranspiration fluxes, and underlying geology. Overall, STICr can be used to create FAIR stream intermittency data and enable advances in hydrologic and ecosystem science.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.