Fei Zeng , Ziyang Yang , Lei Luo , Wei Du , Han Yan , Xun Zhou
{"title":"Transient analysis of particle deposition characteristics in a highly loaded turbine cascade with varying blade profiles","authors":"Fei Zeng , Ziyang Yang , Lei Luo , Wei Du , Han Yan , Xun Zhou","doi":"10.1016/j.energy.2025.136150","DOIUrl":null,"url":null,"abstract":"<div><div>The particle deposition process on turbine blades has the potential to compromise the service life, aerodynamic efficiency, and cooling performance of the blades. In this paper, for the first-stage high-pressure turbine guide vane of an aeroengine, User-Defined Functions (UDF) and unsteady numerical simulation techniques are used to investigate the deposition characteristics of the cascade surface under different profile parameters. In this study, two variables, leading edge diameter and stagger angle of the cascade, are set to investigate the effect of the variation of both on the surface deposition distribution, the impact efficiency, the sticking efficiency, and the capture efficiency in the turbine cascades. The results show that the 7.5 cm and 9.5 cm leading edge diameter cascades show a decrease in sticking efficiency (by about 2.3 %) and a cut in deposition of 5.0 % compared to the 5.5 cm leading edge diameter cascade. Moreover, compared with the highest sticking efficiency of 29.75° stagger angle cascade, the sticking efficiency of 32.75° stagger angle cascade is reduced by 3.4 %, and the amount of deposition particles is reduced by 7.1 %. The results reflect the significant effect of leading edge diameter and stagger angle on particle deposition behavior.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"326 ","pages":"Article 136150"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036054422501792X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The particle deposition process on turbine blades has the potential to compromise the service life, aerodynamic efficiency, and cooling performance of the blades. In this paper, for the first-stage high-pressure turbine guide vane of an aeroengine, User-Defined Functions (UDF) and unsteady numerical simulation techniques are used to investigate the deposition characteristics of the cascade surface under different profile parameters. In this study, two variables, leading edge diameter and stagger angle of the cascade, are set to investigate the effect of the variation of both on the surface deposition distribution, the impact efficiency, the sticking efficiency, and the capture efficiency in the turbine cascades. The results show that the 7.5 cm and 9.5 cm leading edge diameter cascades show a decrease in sticking efficiency (by about 2.3 %) and a cut in deposition of 5.0 % compared to the 5.5 cm leading edge diameter cascade. Moreover, compared with the highest sticking efficiency of 29.75° stagger angle cascade, the sticking efficiency of 32.75° stagger angle cascade is reduced by 3.4 %, and the amount of deposition particles is reduced by 7.1 %. The results reflect the significant effect of leading edge diameter and stagger angle on particle deposition behavior.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.