Reliability analysis of godan graphs in terms of generalized 4-connectivity

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jing Wang , Zhangdong Ouyang , Yuanqiu Huang
{"title":"Reliability analysis of godan graphs in terms of generalized 4-connectivity","authors":"Jing Wang ,&nbsp;Zhangdong Ouyang ,&nbsp;Yuanqiu Huang","doi":"10.1016/j.dam.2025.04.026","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph and <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Denote by <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> the maximum number <span><math><mi>r</mi></math></span> of internally disjoint <span><math><mi>S</mi></math></span>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mo>…</mo></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span> and <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> for any integers <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>≤</mo><mi>r</mi></mrow></math></span>. For an integer <span><math><mi>k</mi></math></span> with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, the generalized <span><math><mi>k</mi></math></span>-connectivity of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mtext>{</mtext><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mtext>}</mtext></mrow></math></span>. The generalized <span><math><mi>k</mi></math></span>-connectivity of a graph is a natural extension of the classical connectivity and plays a key role in measuring the reliability of modern interconnection networks. The godan graph <span><math><mrow><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a kind of Cayley graph which possess many desirable properties. In this paper, we study the generalized 4-connectivity of <span><math><mrow><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and show that <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mrow><mo>(</mo><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, that is, there are <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> internally disjoint <span><math><mi>S</mi></math></span>-trees connecting any four vertices <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></mrow></math></span> and <span><math><mi>w</mi></math></span> in <span><math><mrow><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>}</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 210-223"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001969","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected graph and SV(G). Denote by κG(S) the maximum number r of internally disjoint S-trees T1, T2, , Tr in G such that V(Ti)V(Tj)=S and E(Ti)E(Tj)= for any integers 1i<jr. For an integer k with 2k|V(G)|, the generalized k-connectivity of a graph G, denoted by κk(G), is defined as κk(G)=min{κG(S)|SV(G) and |S|=k}. The generalized k-connectivity of a graph is a natural extension of the classical connectivity and plays a key role in measuring the reliability of modern interconnection networks. The godan graph EAn is a kind of Cayley graph which possess many desirable properties. In this paper, we study the generalized 4-connectivity of EAn and show that κ4(EAn)=n1, that is, there are n1 internally disjoint S-trees connecting any four vertices x,y,z and w in EAn, where n3 and S={x,y,z,w}.
基于广义4连通性的高丹图可靠性分析
设G为连通图,S⊥V(G)。用κG(S)表示G中使V(Ti)∩V(Tj)=S且E(Ti)∩E(Tj)=0的内部不相交S树T1, T2,…,Tr的最大个数r,对于任意整数1≤i<;j≤r。对于2≤k≤|V(G)|的整数k,定义图G的广义k-连通性为κk(G): κk(G)=min{κG(S)|S≤V(G), |S|=k}。图的广义k-连通性是经典连通性的自然扩展,在衡量现代互联网络的可靠性方面起着关键作用。高丹图EAn是一类具有许多理想性质的凯利图。本文研究了EAn的广义4-连通性,证明了κ4(EAn)=n−1,即存在n−1个内部不相交的S树连接EAn中的任意四个顶点x,y,z,w,其中n≥3且S={x,y,z,w}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信