{"title":"Reliability analysis of godan graphs in terms of generalized 4-connectivity","authors":"Jing Wang , Zhangdong Ouyang , Yuanqiu Huang","doi":"10.1016/j.dam.2025.04.026","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph and <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Denote by <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> the maximum number <span><math><mi>r</mi></math></span> of internally disjoint <span><math><mi>S</mi></math></span>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mo>…</mo></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span> and <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> for any integers <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>r</mi></mrow></math></span>. For an integer <span><math><mi>k</mi></math></span> with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, the generalized <span><math><mi>k</mi></math></span>-connectivity of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mtext>{</mtext><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mtext>}</mtext></mrow></math></span>. The generalized <span><math><mi>k</mi></math></span>-connectivity of a graph is a natural extension of the classical connectivity and plays a key role in measuring the reliability of modern interconnection networks. The godan graph <span><math><mrow><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a kind of Cayley graph which possess many desirable properties. In this paper, we study the generalized 4-connectivity of <span><math><mrow><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and show that <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mrow><mo>(</mo><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, that is, there are <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> internally disjoint <span><math><mi>S</mi></math></span>-trees connecting any four vertices <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></mrow></math></span> and <span><math><mi>w</mi></math></span> in <span><math><mrow><mi>E</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>}</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 210-223"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001969","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a connected graph and . Denote by the maximum number of internally disjoint -trees , , , in such that and for any integers . For an integer with , the generalized -connectivity of a graph , denoted by , is defined as and . The generalized -connectivity of a graph is a natural extension of the classical connectivity and plays a key role in measuring the reliability of modern interconnection networks. The godan graph is a kind of Cayley graph which possess many desirable properties. In this paper, we study the generalized 4-connectivity of and show that , that is, there are internally disjoint -trees connecting any four vertices and in , where and .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.