{"title":"Multi-layered data framework for enhancing postoperative outcomes and anaesthesia management through natural language processing","authors":"Peng Xu","doi":"10.1016/j.slast.2025.100294","DOIUrl":null,"url":null,"abstract":"<div><div>Anaesthesia management is a critical aspect of perioperative care, directly influencing postoperative recovery, pain management, and patient outcomes. Despite advancements in anaesthesia techniques, variability in patient responses and unexpected postoperative complications remain significant challenges. The research proposes a multi-layered architecture named Anaesthesia CareNet for analyzing data from diverse sources to enhance personalized anaesthesia management and postoperative outcome prediction. The architecture is structured into two primary layers: Data processing and Predictive Modeling. In the Data processing layer, advanced Natural Language Processing (NLP) techniques such as Named Entity Recognition (NER), normalization, lemmatization, and stemming are applied to clean and standardize the unstructured clinical data. Generative Pre-trained Transformer 3 (GPT-3), a Large Language Model (LLM) is employed as a feature extraction method, allowing the system to process and analyze complex clinical narratives and unstructured textual data from patient records. This enables more precise and personalized predictions, not only improving anaesthesia management but also laying the groundwork for broader applications in life sciences. The extracted data is passed into the predictive modeling layer, where the Intelligent Golden Eagle Fine-Tuned Logistic Regression (IGE-LR) model is applied. By analyzing correlations between patient characteristics, surgical details, and postoperative recovery patterns, IGE-LR enables the prediction of complications, pain management requirements, and recovery trajectories beyond anaesthesia; the methodology has potential applications in diverse areas such as diagnostics, drug discovery, and personalized medicine, where large-scale data analysis, predictive modeling, and real-time adaptability are crucial for improving patient outcomes. The proposed IGE-LR method achieves higher performance with 91.7 % accuracy, 90.6 % specificity, and 90 % AUC, with a recall of 91.3 %, precision of 90.1 %, and an F1-Score of 90.4 %. By leveraging advanced NLP and predictive analytics, Anaesthesia CareNet exemplifies how AI-driven frameworks can transform life sciences, advancing personalized healthcare and creating a more precise, efficient, and dynamic approach to treatment management.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100294"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Anaesthesia management is a critical aspect of perioperative care, directly influencing postoperative recovery, pain management, and patient outcomes. Despite advancements in anaesthesia techniques, variability in patient responses and unexpected postoperative complications remain significant challenges. The research proposes a multi-layered architecture named Anaesthesia CareNet for analyzing data from diverse sources to enhance personalized anaesthesia management and postoperative outcome prediction. The architecture is structured into two primary layers: Data processing and Predictive Modeling. In the Data processing layer, advanced Natural Language Processing (NLP) techniques such as Named Entity Recognition (NER), normalization, lemmatization, and stemming are applied to clean and standardize the unstructured clinical data. Generative Pre-trained Transformer 3 (GPT-3), a Large Language Model (LLM) is employed as a feature extraction method, allowing the system to process and analyze complex clinical narratives and unstructured textual data from patient records. This enables more precise and personalized predictions, not only improving anaesthesia management but also laying the groundwork for broader applications in life sciences. The extracted data is passed into the predictive modeling layer, where the Intelligent Golden Eagle Fine-Tuned Logistic Regression (IGE-LR) model is applied. By analyzing correlations between patient characteristics, surgical details, and postoperative recovery patterns, IGE-LR enables the prediction of complications, pain management requirements, and recovery trajectories beyond anaesthesia; the methodology has potential applications in diverse areas such as diagnostics, drug discovery, and personalized medicine, where large-scale data analysis, predictive modeling, and real-time adaptability are crucial for improving patient outcomes. The proposed IGE-LR method achieves higher performance with 91.7 % accuracy, 90.6 % specificity, and 90 % AUC, with a recall of 91.3 %, precision of 90.1 %, and an F1-Score of 90.4 %. By leveraging advanced NLP and predictive analytics, Anaesthesia CareNet exemplifies how AI-driven frameworks can transform life sciences, advancing personalized healthcare and creating a more precise, efficient, and dynamic approach to treatment management.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.