{"title":"Advances in understanding vacuum break dynamics in liquid helium-cooled tubes for accelerator beamline applications","authors":"Yinghe Qi , Wei Guo","doi":"10.1016/j.cryogenics.2025.104082","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding air propagation and condensation following a catastrophic vacuum break in particle accelerator beamlines cooled by liquid helium is essential for ensuring operational safety. This review summarizes experimental and theoretical work conducted in our cryogenics lab to address this issue. Systematic measurements were performed to study nitrogen gas propagation in uniform copper tubes cooled by both normal liquid helium (He I) and superfluid helium (He II). These experiments revealed a nearly exponential deceleration of the gas front, with stronger deceleration observed in He II-cooled tubes. To interpret these results, a one-dimensional (1D) theoretical model was developed, incorporating gas dynamics, heat transfer, and condensation mechanisms. The model successfully reproduced key experimental observations in the uniform tube system. However, recent experiments involving a bulky copper cavity designed to mimic the geometry of a superconducting radio-frequency (SRF) cavity revealed strong anisotropic flow patterns of nitrogen gas within the cavity, highlighting limitations in extrapolating results from simplified tube geometries to real accelerator beamlines. To address these complexities, we outline plans for systematic studies using tubes with multiple bulky cavities and the development of a two-dimensional (2D) model to simulate gas dynamics in these more intricate configurations. These efforts aim to provide a comprehensive understanding of vacuum breaks in particle accelerators and improve predictive capabilities for their operational safety.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"149 ","pages":"Article 104082"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525000608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding air propagation and condensation following a catastrophic vacuum break in particle accelerator beamlines cooled by liquid helium is essential for ensuring operational safety. This review summarizes experimental and theoretical work conducted in our cryogenics lab to address this issue. Systematic measurements were performed to study nitrogen gas propagation in uniform copper tubes cooled by both normal liquid helium (He I) and superfluid helium (He II). These experiments revealed a nearly exponential deceleration of the gas front, with stronger deceleration observed in He II-cooled tubes. To interpret these results, a one-dimensional (1D) theoretical model was developed, incorporating gas dynamics, heat transfer, and condensation mechanisms. The model successfully reproduced key experimental observations in the uniform tube system. However, recent experiments involving a bulky copper cavity designed to mimic the geometry of a superconducting radio-frequency (SRF) cavity revealed strong anisotropic flow patterns of nitrogen gas within the cavity, highlighting limitations in extrapolating results from simplified tube geometries to real accelerator beamlines. To address these complexities, we outline plans for systematic studies using tubes with multiple bulky cavities and the development of a two-dimensional (2D) model to simulate gas dynamics in these more intricate configurations. These efforts aim to provide a comprehensive understanding of vacuum breaks in particle accelerators and improve predictive capabilities for their operational safety.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics