P. Grigusova , O. Limberger , C. Murkute , F. Pucha , V.H. González-Jaramillo , A. Fries , D. Windhorst , L. Breuer , M. Dantas de Paula , T. Hickler , K. Trachte , J. Bendix
{"title":"Radiation partitioning in a cloud-rich tropical mountain rain forest of the S-Ecuadorian Andes for use in plot-based land surface modelling","authors":"P. Grigusova , O. Limberger , C. Murkute , F. Pucha , V.H. González-Jaramillo , A. Fries , D. Windhorst , L. Breuer , M. Dantas de Paula , T. Hickler , K. Trachte , J. Bendix","doi":"10.1016/j.dynatmoce.2025.101553","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the partitioning of downward shortwave radiation into direct and diffuse components is essential for modeling ecosystem energy fluxes. Accurate partitioning functions are critical for land surface models (LSMs) coupled with climate models, yet these functions often depend on regional cloud and aerosol conditions. While data for developing semi-empirical partitioning functions are abundant in mid-latitudes, their performance in tropical regions, particularly in the high Andes, remains poorly understood due to scarce ground-based measurements. This study analyzed a unique dataset of shortwave radiation components from a tropical mountain rainforest (MRF) in southern Ecuador, developing and testing a locally adapted partitioning function using Random Forest Regression. The model achieved high accuracy in predicting the percentage of diffuse radiation (%Dif; R<sup>2</sup>=0.95, RMSE = 5.33, MAE = 3.74) and absolute diffuse radiation (R<sup>2</sup>=0.99, RMSE = 5.30, MAE = 14). When applied to simulate upward shortwave radiation, the model outperformed commonly used partitioning functions achieving the lowest RMSE (8.62) and MAE (5.82) while matching the highest R<sup>2</sup> (0.97). These results underscore the importance of regionally adapted radiation partitioning functions for improving LSM performance, particularly in complex tropical environments. The adapted LSM will be further utilized for studies on heat fluxes and carbon sequestration.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"110 ","pages":"Article 101553"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026525000284","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the partitioning of downward shortwave radiation into direct and diffuse components is essential for modeling ecosystem energy fluxes. Accurate partitioning functions are critical for land surface models (LSMs) coupled with climate models, yet these functions often depend on regional cloud and aerosol conditions. While data for developing semi-empirical partitioning functions are abundant in mid-latitudes, their performance in tropical regions, particularly in the high Andes, remains poorly understood due to scarce ground-based measurements. This study analyzed a unique dataset of shortwave radiation components from a tropical mountain rainforest (MRF) in southern Ecuador, developing and testing a locally adapted partitioning function using Random Forest Regression. The model achieved high accuracy in predicting the percentage of diffuse radiation (%Dif; R2=0.95, RMSE = 5.33, MAE = 3.74) and absolute diffuse radiation (R2=0.99, RMSE = 5.30, MAE = 14). When applied to simulate upward shortwave radiation, the model outperformed commonly used partitioning functions achieving the lowest RMSE (8.62) and MAE (5.82) while matching the highest R2 (0.97). These results underscore the importance of regionally adapted radiation partitioning functions for improving LSM performance, particularly in complex tropical environments. The adapted LSM will be further utilized for studies on heat fluxes and carbon sequestration.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.