Lp-boundedness of wave operators for fourth order Schrödinger operators with zero resonances on R3

IF 1.7 2区 数学 Q1 MATHEMATICS
Haruya Mizutani , Zijun Wan , Xiaohua Yao
{"title":"Lp-boundedness of wave operators for fourth order Schrödinger operators with zero resonances on R3","authors":"Haruya Mizutani ,&nbsp;Zijun Wan ,&nbsp;Xiaohua Yao","doi":"10.1016/j.jfa.2025.111013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> be the fourth-order Schrödinger operator on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with a real-valued fast-decaying potential <em>V</em>. If zero is neither a resonance nor an eigenvalue of <em>H</em>, then it was recently shown that the wave operators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and unbounded at the endpoints <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span>.</div><div>This paper is to further establish the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-boundedness of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> that exhibit all types of singularities at the zero energy threshold. We first prove that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> in the first kind resonance case, and then proceed to establish for the second kind resonance case that they are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>3</mn></math></span>, but not if <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>. In the third kind resonance case, we also show that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>3</mn></math></span> and generically unbounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for any <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>. Moreover, it is also shown that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> if in addition <em>H</em> has the zero eigenvalue, but no <em>p</em>-wave zero resonances and all zero eigenfunctions are orthogonal to <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>V</mi></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> with <span><math><mi>x</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div><div>These results describe precisely the validity of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-boundedness of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> for all types of singularities at the zero energy threshold with some exceptions for the endpoint cases <span><math><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>∞</mo></math></span>. As an application, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> decay estimates are also derived for the fourth-order Schrödinger equations and Beam equations with zero resonance singularities.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111013"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001958","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H=Δ2+V be the fourth-order Schrödinger operator on R3 with a real-valued fast-decaying potential V. If zero is neither a resonance nor an eigenvalue of H, then it was recently shown that the wave operators W±(H,Δ2) are bounded on Lp(R3) for all 1<p< and unbounded at the endpoints p=1 and p=.
This paper is to further establish the Lp-boundedness of W±(H,Δ2) that exhibit all types of singularities at the zero energy threshold. We first prove that W±(H,Δ2) are bounded on Lp(R3) for all 1<p< in the first kind resonance case, and then proceed to establish for the second kind resonance case that they are bounded on Lp(R3) for all 1<p<3, but not if 3p. In the third kind resonance case, we also show that W±(H,Δ2) are bounded on Lp(R3) for all 1<p<3 and generically unbounded on Lp(R3) for any 3p. Moreover, it is also shown that W±(H,Δ2) are bounded on Lp(R3) for all 3p< if in addition H has the zero eigenvalue, but no p-wave zero resonances and all zero eigenfunctions are orthogonal to xixjxkV in L2(R3) for all i,j,k=1,2,3 with x=(x1,x2,x3)R3.
These results describe precisely the validity of the Lp-boundedness of W±(H,Δ2) in R3 for all types of singularities at the zero energy threshold with some exceptions for the endpoint cases p=1,. As an application, Lp-Lq decay estimates are also derived for the fourth-order Schrödinger equations and Beam equations with zero resonance singularities.
R3上零共振四阶Schrödinger算子的波算子的lp有界性
假设H=Δ2+V是R3上的四阶薛定谔算子,具有实值快衰减势V。如果零既不是共振也不是H的特征值,那么最近的研究表明,波算子W±(H,Δ2)在Lp(R3)上对于所有1<p<∞都是有界的,而在端点p=1和p=∞处是无界的。本文将进一步建立 W±(H,Δ2)的 Lp 有界性,它在零能量阈值处表现出所有类型的奇异性。我们首先证明,在第一种共振情况下,W±(H,Δ2) 在 Lp(R3) 上对所有 1<p<∞ 都是有界的;然后继续证明,在第二种共振情况下,它们在 Lp(R3) 上对所有 1<p<3 都是有界的,但如果 3≤p≤∞ 则不是。在第三种共振情况下,我们还证明了 W±(H,Δ2)在 Lp(R3) 上对所有 1<p<3 都是有界的,而在 Lp(R3) 上对任何 3≤p≤∞ 通常都是无界的。此外,还证明了在所有 3≤p<∞ 条件下,W±(H,Δ2) 在 Lp(R3) 上都是有界的,如果此外 H 具有零特征值,但没有 p 波零共振,并且对于所有 i,j,k=1,2,3,x=(x1,x2,x3)∈R3,所有零特征函数都与 L2(R3) 中的 xixjxkV 正交。这些结果精确地描述了 W±(H,Δ2)在 R3 中的 Lp 有界性对于零能量阈值处所有类型奇点的有效性,但对于端点情况 p=1,∞ 有些例外。作为应用,还推导出了具有零共振奇点的四阶薛定谔方程和梁方程的 Lp-Lq 衰变估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信