{"title":"Lp-boundedness of wave operators for fourth order Schrödinger operators with zero resonances on R3","authors":"Haruya Mizutani , Zijun Wan , Xiaohua Yao","doi":"10.1016/j.jfa.2025.111013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> be the fourth-order Schrödinger operator on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with a real-valued fast-decaying potential <em>V</em>. If zero is neither a resonance nor an eigenvalue of <em>H</em>, then it was recently shown that the wave operators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and unbounded at the endpoints <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span>.</div><div>This paper is to further establish the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-boundedness of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> that exhibit all types of singularities at the zero energy threshold. We first prove that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> in the first kind resonance case, and then proceed to establish for the second kind resonance case that they are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn></math></span>, but not if <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>. In the third kind resonance case, we also show that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn></math></span> and generically unbounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for any <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>. Moreover, it is also shown that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> if in addition <em>H</em> has the zero eigenvalue, but no <em>p</em>-wave zero resonances and all zero eigenfunctions are orthogonal to <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>V</mi></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> with <span><math><mi>x</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div><div>These results describe precisely the validity of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-boundedness of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> for all types of singularities at the zero energy threshold with some exceptions for the endpoint cases <span><math><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>∞</mo></math></span>. As an application, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> decay estimates are also derived for the fourth-order Schrödinger equations and Beam equations with zero resonance singularities.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111013"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001958","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the fourth-order Schrödinger operator on with a real-valued fast-decaying potential V. If zero is neither a resonance nor an eigenvalue of H, then it was recently shown that the wave operators are bounded on for all and unbounded at the endpoints and .
This paper is to further establish the -boundedness of that exhibit all types of singularities at the zero energy threshold. We first prove that are bounded on for all in the first kind resonance case, and then proceed to establish for the second kind resonance case that they are bounded on for all , but not if . In the third kind resonance case, we also show that are bounded on for all and generically unbounded on for any . Moreover, it is also shown that are bounded on for all if in addition H has the zero eigenvalue, but no p-wave zero resonances and all zero eigenfunctions are orthogonal to in for all with .
These results describe precisely the validity of the -boundedness of in for all types of singularities at the zero energy threshold with some exceptions for the endpoint cases . As an application, - decay estimates are also derived for the fourth-order Schrödinger equations and Beam equations with zero resonance singularities.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis