Marco Fois , Federico Gatti , Carlo de Falco , Luca Formaggia
{"title":"A comparative analysis of mesh-based and particle-based numerical methods for landslide run-out simulations","authors":"Marco Fois , Federico Gatti , Carlo de Falco , Luca Formaggia","doi":"10.1016/j.compfluid.2025.106641","DOIUrl":null,"url":null,"abstract":"<div><div>Landslides are among the most dangerous natural disasters, with their unpredictability and potential for catastrophic human and economic losses exacerbated by climate change. Continuous monitoring and precise modeling of landslide-prone areas are crucial for effective risk management and mitigation. This study explores two distinct numerical simulation approaches: the mesh-based finite element model and the particle-based model. Both methods are analyzed for their ability to simulate landslide dynamics, focusing on their respective advantages in handling complex terrain, material interactions, and large deformations. A modified version of the second-order Taylor-Galerkin scheme and the depth-averaged Material Point Method are employed to model gravity-driven free surface flows, based on depth-integrated incompressible Navier–Stokes equations. The methods are rigorously tested against benchmarks and applied to a real-world scenario to assess their performance, strengths, and limitations. The results offer insights into selecting appropriate simulation techniques for landslide analysis, depending on specific modeling requirements and computational resources.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"295 ","pages":"Article 106641"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302500101X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Landslides are among the most dangerous natural disasters, with their unpredictability and potential for catastrophic human and economic losses exacerbated by climate change. Continuous monitoring and precise modeling of landslide-prone areas are crucial for effective risk management and mitigation. This study explores two distinct numerical simulation approaches: the mesh-based finite element model and the particle-based model. Both methods are analyzed for their ability to simulate landslide dynamics, focusing on their respective advantages in handling complex terrain, material interactions, and large deformations. A modified version of the second-order Taylor-Galerkin scheme and the depth-averaged Material Point Method are employed to model gravity-driven free surface flows, based on depth-integrated incompressible Navier–Stokes equations. The methods are rigorously tested against benchmarks and applied to a real-world scenario to assess their performance, strengths, and limitations. The results offer insights into selecting appropriate simulation techniques for landslide analysis, depending on specific modeling requirements and computational resources.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.