Electrochemical performance enhancement of ZnO/g-C3N4 nanocomposites using urea and thiourea precursors for supercapacitor applications

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Sachin Savarimuthu , Preethi Rency Fathima J. , Jubi Initha Mary Kuzhanthaisamy , Manickam Selvaraj , Kumar Venkatesan , John Sundaram S. , Ho-Chiao Chuang
{"title":"Electrochemical performance enhancement of ZnO/g-C3N4 nanocomposites using urea and thiourea precursors for supercapacitor applications","authors":"Sachin Savarimuthu ,&nbsp;Preethi Rency Fathima J. ,&nbsp;Jubi Initha Mary Kuzhanthaisamy ,&nbsp;Manickam Selvaraj ,&nbsp;Kumar Venkatesan ,&nbsp;John Sundaram S. ,&nbsp;Ho-Chiao Chuang","doi":"10.1016/j.inoche.2025.114555","DOIUrl":null,"url":null,"abstract":"<div><div>Supercapacitors are becoming strong options for energy storage devices. They offer quick charging and discharging, high density, and long-lasting stability over many cycles. This research focuses on the synthesis of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and sulfur-doped graphitic carbon nitride using urea (U-g-C<sub>3</sub>N<sub>4</sub>) and thiourea (TU-g-C<sub>3</sub>N<sub>4</sub>), respectively, along with the fabrication of ZnO/g-C<sub>3</sub>N<sub>4</sub> based nanocomposites for supercapacitor electrode applications. The study aims to enhance electrochemical performance by integrating ZnO with U-g-C<sub>3</sub>N<sub>4</sub> and TU-g-C<sub>3</sub>N<sub>4</sub> as separate nanocomposites, leveraging their synergistic properties to improve energy storage capabilities. The fabricated ZnO/U-g-C<sub>3</sub>N<sub>4</sub> and ZnO/TU-gC<sub>3</sub>N<sub>4</sub> nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV–Vis spectroscopy to analyze their structural, morphological, and optical properties. Furthermore, electrochemical tests, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), were conducted to evaluate their electrochemical performance. The results indicated that the ZnO/TU-g-C<sub>3</sub>N<sub>4</sub> nanocomposites achieved an impressive specific capacitance of 415F/g at a 50 mV/s, which is significantly higher than the capacitance values observed for ZnO/U-g-C<sub>3</sub>N<sub>4</sub> (408F/g) and ZnO (223F/g). Furthermore, ZnO/U-g-C<sub>3</sub>N<sub>4</sub> and ZnO/TU-g-C<sub>3</sub>N<sub>4</sub> demonstrated superior electrochemical stability, this indicates improved redox activity and superior charge storage ability. The results underscore the potential of ZnO/U-g-C<sub>3</sub>N<sub>4</sub> and ZnO/TU-g-C<sub>3</sub>N<sub>4</sub> nanocomposites as effective electrode materials for advanced supercapacitor applications.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"178 ","pages":"Article 114555"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325006719","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors are becoming strong options for energy storage devices. They offer quick charging and discharging, high density, and long-lasting stability over many cycles. This research focuses on the synthesis of graphitic carbon nitride (g-C3N4) and sulfur-doped graphitic carbon nitride using urea (U-g-C3N4) and thiourea (TU-g-C3N4), respectively, along with the fabrication of ZnO/g-C3N4 based nanocomposites for supercapacitor electrode applications. The study aims to enhance electrochemical performance by integrating ZnO with U-g-C3N4 and TU-g-C3N4 as separate nanocomposites, leveraging their synergistic properties to improve energy storage capabilities. The fabricated ZnO/U-g-C3N4 and ZnO/TU-gC3N4 nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV–Vis spectroscopy to analyze their structural, morphological, and optical properties. Furthermore, electrochemical tests, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), were conducted to evaluate their electrochemical performance. The results indicated that the ZnO/TU-g-C3N4 nanocomposites achieved an impressive specific capacitance of 415F/g at a 50 mV/s, which is significantly higher than the capacitance values observed for ZnO/U-g-C3N4 (408F/g) and ZnO (223F/g). Furthermore, ZnO/U-g-C3N4 and ZnO/TU-g-C3N4 demonstrated superior electrochemical stability, this indicates improved redox activity and superior charge storage ability. The results underscore the potential of ZnO/U-g-C3N4 and ZnO/TU-g-C3N4 nanocomposites as effective electrode materials for advanced supercapacitor applications.

Abstract Image

使用尿素和硫脲前驱体提高 ZnO/g-C3N4 纳米复合材料的电化学性能,以应用于超级电容器
超级电容器正在成为能量存储设备的有力选择。它们提供快速充放电,高密度和多次循环的持久稳定性。本研究的重点是分别以尿素(U-g-C3N4)和硫脲(TU-g-C3N4)为原料合成石墨氮化碳(g-C3N4)和硫掺杂石墨氮化碳(TU-g-C3N4),并制备用于超级电容器电极的ZnO/g-C3N4纳米复合材料。该研究旨在通过将ZnO与U-g-C3N4和TU-g-C3N4作为单独的纳米复合材料集成,利用它们的协同特性来提高储能能力,从而提高电化学性能。采用x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)和紫外可见光谱(UV-Vis)对制备的ZnO/U-g-C3N4和ZnO/TU-gC3N4纳米复合材料进行了表征,分析了其结构、形貌和光学性能。此外,通过循环伏安法(CV)和电化学阻抗谱(EIS)等电化学测试来评价其电化学性能。结果表明,ZnO/TU-g-C3N4纳米复合材料在50 mV/s下的比电容值为415F/g,显著高于ZnO/U-g-C3N4的408F/g和ZnO的223F/g。此外,ZnO/U-g-C3N4和ZnO/TU-g-C3N4表现出优异的电化学稳定性,这表明ZnO/U-g-C3N4具有更好的氧化还原活性和更好的电荷存储能力。研究结果强调了ZnO/U-g-C3N4和ZnO/TU-g-C3N4纳米复合材料作为先进超级电容器电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信