{"title":"The effect of Zn NPs on some growth, biochemical and anatomical factors of chickpea plant stem under UVB irradiation","authors":"Samira Safshekan, Latifeh Pourakbar, Fatemeh Rahmani","doi":"10.1016/j.plana.2025.100154","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored the role of zinc oxide nanoparticles (ZnO NPs) in mitigating UV-B radiation effects on chickpea (<em>Cicer arietinum</em> L.) plants. Chickpea plants were grown hydroponically for 45 days and exposed to UV-B radiation for 30 minutes daily over 15 days after reaching the six-leaf stage. ZnO NPs were applied at 50 mg/L and 100 mg/L before UV-B exposure. UV-B reduced root length (40 %), shoot fresh weight (17 %), shoot dry weight (15 %), stem thickness (39 %), and pith parenchyma thickness (5 %), while increasing root fresh weight (59 %), root dry weight (12 %), total phenolic content (TPC, 185.77 %), total flavonoid content (TFC, 94.44 %), and DPPH free radical scavenging activity (31.94 %). ZnO NPs (50 mg/L and 100 mg/L) increased root length (15 % and 25 %), shoot length (21 % and 12 %), shoot fresh weight (56 % and 63 %), and shoot dry weight (40 % and 79 %), respectively. TPC increased by 8 % with 50 mg/L ZnO NPs, while TFC rose by 30 % with 100 mg/L ZnO NPs. DPPH activity improved by 15.78 % and 3.59 % at 50 mg/L and 100 mg/L ZnO NPs, respectively. Stem thickness increased by 12 % and 31 %, and pith thickness by 18 % with 50 mg/L ZnO NPs. UV-B reduced sclerenchyma, xylem, and epidermal cell thickness but increased xylem cell length and pith parenchyma, xylem, and epidermal cell width. Application of 100 mg/L ZnO NPs enhanced xylem thickness, phloem vessel thickness, vascular tissue thickness, and collenchyma tissue thickness. Overall, ZnO NPs demonstrated significant potential in alleviating UV-B-induced damage and improving chickpea plant growth and anatomical integrity.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"12 ","pages":"Article 100154"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277311112500021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the role of zinc oxide nanoparticles (ZnO NPs) in mitigating UV-B radiation effects on chickpea (Cicer arietinum L.) plants. Chickpea plants were grown hydroponically for 45 days and exposed to UV-B radiation for 30 minutes daily over 15 days after reaching the six-leaf stage. ZnO NPs were applied at 50 mg/L and 100 mg/L before UV-B exposure. UV-B reduced root length (40 %), shoot fresh weight (17 %), shoot dry weight (15 %), stem thickness (39 %), and pith parenchyma thickness (5 %), while increasing root fresh weight (59 %), root dry weight (12 %), total phenolic content (TPC, 185.77 %), total flavonoid content (TFC, 94.44 %), and DPPH free radical scavenging activity (31.94 %). ZnO NPs (50 mg/L and 100 mg/L) increased root length (15 % and 25 %), shoot length (21 % and 12 %), shoot fresh weight (56 % and 63 %), and shoot dry weight (40 % and 79 %), respectively. TPC increased by 8 % with 50 mg/L ZnO NPs, while TFC rose by 30 % with 100 mg/L ZnO NPs. DPPH activity improved by 15.78 % and 3.59 % at 50 mg/L and 100 mg/L ZnO NPs, respectively. Stem thickness increased by 12 % and 31 %, and pith thickness by 18 % with 50 mg/L ZnO NPs. UV-B reduced sclerenchyma, xylem, and epidermal cell thickness but increased xylem cell length and pith parenchyma, xylem, and epidermal cell width. Application of 100 mg/L ZnO NPs enhanced xylem thickness, phloem vessel thickness, vascular tissue thickness, and collenchyma tissue thickness. Overall, ZnO NPs demonstrated significant potential in alleviating UV-B-induced damage and improving chickpea plant growth and anatomical integrity.