Asmaa Boujibar , Kevin Righter , Emmanuel Fontaine , Max Collinet , Sarah Lambart , Larry R. Nittler , Kellye M. Pando
{"title":"A Pyroxenite mantle on Mercury? Experimental insights from enstatite chondrite melting at pressures up to 5 GPa","authors":"Asmaa Boujibar , Kevin Righter , Emmanuel Fontaine , Max Collinet , Sarah Lambart , Larry R. Nittler , Kellye M. Pando","doi":"10.1016/j.icarus.2025.116602","DOIUrl":null,"url":null,"abstract":"<div><div>Enstatite chondrites are potential source material for the accretion of Mercury due to their reduced nature and enrichment in volatile elements. Understanding their melting properties is therefore important to better assess a scenario where Mercury formed from these chondrites. Here, we present experimental data on the partial melting of a modified EH4 Indarch enstatite chondrite, which was adjusted to have 18 % more metallic Si than SiO<sub>2</sub> in mass, yielding an oxygen fugacity of 3.7 ± 0.6 below iron-wüstite redox buffer and 12 wt% Si in the metal. Experiments were performed from 0.5 to 5 GPa using piston cylinder and multi-anvil apparatuses. Results indicate that the stability field of enstatite expands relative to olivine. This expansion is likely due to the presence of Ca-S and Mg-S complexes in the silicate melt, which enhance SiO<sub>2</sub> activity and promote enstatite crystallization. Silicate melts present a correlation between Ca and S concentrations, like the global patterns seen on Mercury's surface but with higher sulfur abundances. Additionally, sulfides show enrichment in Mg and Ca, up to 22 and 13 wt% respectively, the main remaining cations being Fe, Cr and Mn. These high Mg and Ca contents are observed at low temperatures and high silica content in the silicate melt, respectively. Partial melting of this reduced EH4 chondrite yields a large range of silicate melt compositions, due to the Mg- and Ca-rich sulfides which act as significant residual phases. High-pressure melts (2 to 5 GPa, 160–400 km depth in Mercury) are Mg-rich, similar to those in Mercury's high‑magnesium region (HMR), while low-pressure melts (0.5 to 1 GPa, 40–80 km depth) are Si-rich, comparable to the northern volcanic plains (NVP). Results suggest that a large fraction of Mercury's surface aligns compositionally with these melts, implying that Mercury's mantle could predominantly have a pyroxenitic composition. However, regions with differing compositions, such as aluminum-rich areas, like the Caloris basin, suggest local variability in mantle geochemistry. The HMR chemistry indicates melting at pressures up to the base of Mercury's mantle, possibly due to a large impact. Our study also explores whether the surface compositions could result from mixing processes like impact gardening or polybaric melting and magma mixing. The findings suggest that areas such as the intercrater plains and heavily cratered regions could be mixtures of melts from different pressures, ranging from 0.5 to 5 GPa, which corresponds to the crust-mantle to core-mantle boundaries. Overall, our results show that if Mercury formed from materials similar to enstatite chondrites, batch melting of its primitive pyroxenite mantle would yield magmas with compositions resembling those of most rocks observed on the surface. While the exact olivine content of the mantle remains uncertain, the residual mantle is likely enstatite-rich due to the extensive stability of enstatite relative to olivine in sulfur-rich reduced systems.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"437 ","pages":"Article 116602"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525001496","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Enstatite chondrites are potential source material for the accretion of Mercury due to their reduced nature and enrichment in volatile elements. Understanding their melting properties is therefore important to better assess a scenario where Mercury formed from these chondrites. Here, we present experimental data on the partial melting of a modified EH4 Indarch enstatite chondrite, which was adjusted to have 18 % more metallic Si than SiO2 in mass, yielding an oxygen fugacity of 3.7 ± 0.6 below iron-wüstite redox buffer and 12 wt% Si in the metal. Experiments were performed from 0.5 to 5 GPa using piston cylinder and multi-anvil apparatuses. Results indicate that the stability field of enstatite expands relative to olivine. This expansion is likely due to the presence of Ca-S and Mg-S complexes in the silicate melt, which enhance SiO2 activity and promote enstatite crystallization. Silicate melts present a correlation between Ca and S concentrations, like the global patterns seen on Mercury's surface but with higher sulfur abundances. Additionally, sulfides show enrichment in Mg and Ca, up to 22 and 13 wt% respectively, the main remaining cations being Fe, Cr and Mn. These high Mg and Ca contents are observed at low temperatures and high silica content in the silicate melt, respectively. Partial melting of this reduced EH4 chondrite yields a large range of silicate melt compositions, due to the Mg- and Ca-rich sulfides which act as significant residual phases. High-pressure melts (2 to 5 GPa, 160–400 km depth in Mercury) are Mg-rich, similar to those in Mercury's high‑magnesium region (HMR), while low-pressure melts (0.5 to 1 GPa, 40–80 km depth) are Si-rich, comparable to the northern volcanic plains (NVP). Results suggest that a large fraction of Mercury's surface aligns compositionally with these melts, implying that Mercury's mantle could predominantly have a pyroxenitic composition. However, regions with differing compositions, such as aluminum-rich areas, like the Caloris basin, suggest local variability in mantle geochemistry. The HMR chemistry indicates melting at pressures up to the base of Mercury's mantle, possibly due to a large impact. Our study also explores whether the surface compositions could result from mixing processes like impact gardening or polybaric melting and magma mixing. The findings suggest that areas such as the intercrater plains and heavily cratered regions could be mixtures of melts from different pressures, ranging from 0.5 to 5 GPa, which corresponds to the crust-mantle to core-mantle boundaries. Overall, our results show that if Mercury formed from materials similar to enstatite chondrites, batch melting of its primitive pyroxenite mantle would yield magmas with compositions resembling those of most rocks observed on the surface. While the exact olivine content of the mantle remains uncertain, the residual mantle is likely enstatite-rich due to the extensive stability of enstatite relative to olivine in sulfur-rich reduced systems.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.