{"title":"(σ,τ)-derivations of group rings with applications","authors":"Praveen Manju , Rajendra Kumar Sharma","doi":"10.1016/j.ffa.2025.102629","DOIUrl":null,"url":null,"abstract":"<div><div>Leo Creedon and Kieran Hughes in <span><span>[18]</span></span> studied derivations of a group ring <em>RG</em> (of a group <em>G</em> over a commutative unital ring <em>R</em>) in terms of generators and relators of group <em>G</em>. In this article, we do that for <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>-derivations. We develop a necessary and sufficient condition such that a map <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi><mi>G</mi></math></span> can be extended uniquely to a <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>-derivation <em>D</em> of <em>RG</em>, where <em>R</em> is a commutative ring with unity, <em>G</em> is a group having a presentation <span><math><mo>〈</mo><mi>X</mi><mo>|</mo><mi>Y</mi><mo>〉</mo></math></span> (<em>X</em> the set of generators and <em>Y</em> the set of relators) and <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> is a pair of <em>R</em>-algebra endomorphisms of <em>RG</em> which are <em>R</em>-linear extensions of the group endomorphisms of <em>G</em>. Further, we classify all inner <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>-derivations of the group algebra <em>RG</em> of an arbitrary group <em>G</em> over an arbitrary commutative unital ring <em>R</em> in terms of the rank and a basis of the corresponding <em>R</em>-module consisting of all inner <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>-derivations of <em>RG</em>. We obtain several corollaries, particularly when <em>G</em> is a <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>-FC group or a finite group <em>G</em> and when <em>R</em> is a field. We also prove that if <em>R</em> is a unital ring and <em>G</em> is a group whose order is invertible in <em>R</em>, then every <span><math><mo>(</mo><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>-derivation of <em>RG</em> is inner. We apply the results obtained above to study <em>σ</em>-derivations of commutative group algebras over a field of positive characteristic and to classify all inner and outer <em>σ</em>-derivations of dihedral group algebras <span><math><mi>F</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>|</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>a</mi><mi>b</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>〉</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>) over an arbitrary field <span><math><mi>F</mi></math></span> of any characteristic. Finally, we give the applications of these twisted derivations in coding theory by giving a formal construction with examples of a new code called IDD code.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102629"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000590","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Leo Creedon and Kieran Hughes in [18] studied derivations of a group ring RG (of a group G over a commutative unital ring R) in terms of generators and relators of group G. In this article, we do that for -derivations. We develop a necessary and sufficient condition such that a map can be extended uniquely to a -derivation D of RG, where R is a commutative ring with unity, G is a group having a presentation (X the set of generators and Y the set of relators) and is a pair of R-algebra endomorphisms of RG which are R-linear extensions of the group endomorphisms of G. Further, we classify all inner -derivations of the group algebra RG of an arbitrary group G over an arbitrary commutative unital ring R in terms of the rank and a basis of the corresponding R-module consisting of all inner -derivations of RG. We obtain several corollaries, particularly when G is a -FC group or a finite group G and when R is a field. We also prove that if R is a unital ring and G is a group whose order is invertible in R, then every -derivation of RG is inner. We apply the results obtained above to study σ-derivations of commutative group algebras over a field of positive characteristic and to classify all inner and outer σ-derivations of dihedral group algebras (, ) over an arbitrary field of any characteristic. Finally, we give the applications of these twisted derivations in coding theory by giving a formal construction with examples of a new code called IDD code.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.