Henri Ingelman , James K Heffernan , Kaspar Valgepea
{"title":"Adaptive laboratory evolution for improving acetogen gas fermentation","authors":"Henri Ingelman , James K Heffernan , Kaspar Valgepea","doi":"10.1016/j.copbio.2025.103305","DOIUrl":null,"url":null,"abstract":"<div><div>Gas fermentation using acetogens can help humankind transition from petroleum-based industries to more sustainable alternatives. Acetogens are a unique set of organisms that efficiently convert carbon oxide waste gases into chemicals, such as ethanol and acetate. While acetogens are already used in commercially operated bioprocess facilities, the field is still affected by challenging genetic manipulation workflows and a developing knowledge of acetogen metabolism. Adaptive laboratory evolution (ALE) can uniquely contribute here, through evolution of organisms guided by synthetically created niches, which delivers strains with industrially relevant phenotypes and helps to resolve genotype–phenotype relationships. Here, we review the expanding use of ALE for acetogens, showcasing results regarding fundamental understanding of acetogens and improvement of phenotypes — faster growth/substrate utilisation, elimination of media components, improving stress tolerance, and improving growth and robustness in bioreactor cultures. These works provide the field with opportunities to further engineer and manipulate acetogen traits for industrial bioprocesses and improve the understanding of genotype–phenotype relationships.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"93 ","pages":"Article 103305"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000497","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gas fermentation using acetogens can help humankind transition from petroleum-based industries to more sustainable alternatives. Acetogens are a unique set of organisms that efficiently convert carbon oxide waste gases into chemicals, such as ethanol and acetate. While acetogens are already used in commercially operated bioprocess facilities, the field is still affected by challenging genetic manipulation workflows and a developing knowledge of acetogen metabolism. Adaptive laboratory evolution (ALE) can uniquely contribute here, through evolution of organisms guided by synthetically created niches, which delivers strains with industrially relevant phenotypes and helps to resolve genotype–phenotype relationships. Here, we review the expanding use of ALE for acetogens, showcasing results regarding fundamental understanding of acetogens and improvement of phenotypes — faster growth/substrate utilisation, elimination of media components, improving stress tolerance, and improving growth and robustness in bioreactor cultures. These works provide the field with opportunities to further engineer and manipulate acetogen traits for industrial bioprocesses and improve the understanding of genotype–phenotype relationships.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.