{"title":"Thermal protection mechanism of UHTCs-modified C/C composites in high temperature gas scouring coupling environments","authors":"Menglin Zhang , Dou Hu , Qiangang Fu","doi":"10.1016/j.compositesb.2025.112550","DOIUrl":null,"url":null,"abstract":"<div><div>Examining the coupling analysis between environment and material system is prerequisite for advancing the reliability design of thermal protection system components in aerospace applications. To elucidate the resistance of C/C composites to high-temperature gas-flow erosion, C/C–MeC–SiC composites (Me: Hf, Zr, Ti, Ta, Nb, W) were prepared by reactive melt infiltration. The thermal loading characteristics of DC plasma torch (Ar–O<sub>2</sub> atmosphere, 2500 °C) were simulated by finite element analysis, as well as the ablation resistance was analyzed theoretically and experimentally. The ablation-resistant behaviors of carbon-based composites were investigated by theoretical calculations and experimental verification. The results show that the higher temperature resistance of HfC (0.69 μm/s), ZrC (−1.58 μm/s) and their oxidation products become the primary mechanism for the skeletal support of the oxide layer. The high fluidity of TiO<sub>2</sub> rapidly forms an oxide layer but also exacerbates the volatilization of gaseous by-products (TiC, 3.02 μm/s). Due to the volatility of WO<sub>3</sub>, WC is limited to short-term ablation resistance (−2.11 μm/s). The oxidation products of NbC and TaC are directional and are expected to rapidly fill the porous structure under thermal shock. Coupled fluid-thermal-structural simulations elucidate the heat flux density, temperature, and stress distributions of different systems of composites under heterogeneous ablation, consistent with the post-ablation morphological trends.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"302 ","pages":"Article 112550"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004512","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Examining the coupling analysis between environment and material system is prerequisite for advancing the reliability design of thermal protection system components in aerospace applications. To elucidate the resistance of C/C composites to high-temperature gas-flow erosion, C/C–MeC–SiC composites (Me: Hf, Zr, Ti, Ta, Nb, W) were prepared by reactive melt infiltration. The thermal loading characteristics of DC plasma torch (Ar–O2 atmosphere, 2500 °C) were simulated by finite element analysis, as well as the ablation resistance was analyzed theoretically and experimentally. The ablation-resistant behaviors of carbon-based composites were investigated by theoretical calculations and experimental verification. The results show that the higher temperature resistance of HfC (0.69 μm/s), ZrC (−1.58 μm/s) and their oxidation products become the primary mechanism for the skeletal support of the oxide layer. The high fluidity of TiO2 rapidly forms an oxide layer but also exacerbates the volatilization of gaseous by-products (TiC, 3.02 μm/s). Due to the volatility of WO3, WC is limited to short-term ablation resistance (−2.11 μm/s). The oxidation products of NbC and TaC are directional and are expected to rapidly fill the porous structure under thermal shock. Coupled fluid-thermal-structural simulations elucidate the heat flux density, temperature, and stress distributions of different systems of composites under heterogeneous ablation, consistent with the post-ablation morphological trends.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.