SIRT5 promotes the osteo-inductive potential of BMP9 by stabilizing the HIF-1α protein in mouse embryonic fibroblasts

IF 6.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lu Liu , Fanglin Ye , Yue Jiang , Wenting Liu , Dongmei He , Wenge He , Xiang Gao , Hang Liu , Junyi Liao , Baicheng He , Fang He
{"title":"SIRT5 promotes the osteo-inductive potential of BMP9 by stabilizing the HIF-1α protein in mouse embryonic fibroblasts","authors":"Lu Liu ,&nbsp;Fanglin Ye ,&nbsp;Yue Jiang ,&nbsp;Wenting Liu ,&nbsp;Dongmei He ,&nbsp;Wenge He ,&nbsp;Xiang Gao ,&nbsp;Hang Liu ,&nbsp;Junyi Liao ,&nbsp;Baicheng He ,&nbsp;Fang He","doi":"10.1016/j.gendis.2025.101563","DOIUrl":null,"url":null,"abstract":"<div><div>Bone morphogenetic protein 9 (BMP9) exhibits remarkable osteogenic potential. However, the intricate mechanisms driving this function of BMP9 remain elusive. This study endeavors to investigate the potential role of sirtuin 5 (SIRT5) in enhancing BMP9's osteogenic capacity and decipher the underlying molecular pathways. To achieve this aim, we employed real-time PCR, western blotting, histochemical staining, and a cranial defect repair model to assess the impact of SIRT5 on BMP9-mediated osteogenesis. We utilized real-time PCR, western blotting, immunofluorescent staining, and immunoprecipitation assay to explore the associated mechanisms. Our results revealed that SIRT5 significantly up-regulated BMP9-induced osteogenic markers, while SIRT5 knockdown reduced their expression. Concurrently, hypoxia-inducible factor 1 subunit alpha (HIF-1α) level was increased by SIRT5, but reduced by SIRT5 knockdown. Notably, HIF-1α potentiated the SIRT5's ability to strengthen BMP9's osteogenic potential, whereas HIF-1α silencing reduced this effect, which was confirmed by bone defect repair assay. The acetylation and malonylation levels of HIF-1α were reduced by SIRT5, which may enhance its stability to promote BMP9's osteogenic effect. Conversely, SIRT5 knockdown reversed these effects and promoted the degradation of HIF-1α. Collectively, our results demonstrated that the BMP9's osteogenic potential could be promoted by SIRT5, potentially through stabilizing HIF-1α by reducing its acetylation and malonylation modification. This discovery may offer a novel strategy to accelerate bone tissue engineering by enhancing osteogenic differentiation, and it also sheds light on the possible mechanisms underlying BMP9-mediated osteogenic differentiation.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"12 4","pages":"Article 101563"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352304225000522","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone morphogenetic protein 9 (BMP9) exhibits remarkable osteogenic potential. However, the intricate mechanisms driving this function of BMP9 remain elusive. This study endeavors to investigate the potential role of sirtuin 5 (SIRT5) in enhancing BMP9's osteogenic capacity and decipher the underlying molecular pathways. To achieve this aim, we employed real-time PCR, western blotting, histochemical staining, and a cranial defect repair model to assess the impact of SIRT5 on BMP9-mediated osteogenesis. We utilized real-time PCR, western blotting, immunofluorescent staining, and immunoprecipitation assay to explore the associated mechanisms. Our results revealed that SIRT5 significantly up-regulated BMP9-induced osteogenic markers, while SIRT5 knockdown reduced their expression. Concurrently, hypoxia-inducible factor 1 subunit alpha (HIF-1α) level was increased by SIRT5, but reduced by SIRT5 knockdown. Notably, HIF-1α potentiated the SIRT5's ability to strengthen BMP9's osteogenic potential, whereas HIF-1α silencing reduced this effect, which was confirmed by bone defect repair assay. The acetylation and malonylation levels of HIF-1α were reduced by SIRT5, which may enhance its stability to promote BMP9's osteogenic effect. Conversely, SIRT5 knockdown reversed these effects and promoted the degradation of HIF-1α. Collectively, our results demonstrated that the BMP9's osteogenic potential could be promoted by SIRT5, potentially through stabilizing HIF-1α by reducing its acetylation and malonylation modification. This discovery may offer a novel strategy to accelerate bone tissue engineering by enhancing osteogenic differentiation, and it also sheds light on the possible mechanisms underlying BMP9-mediated osteogenic differentiation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & Diseases
Genes & Diseases Multiple-
CiteScore
7.30
自引率
0.00%
发文量
347
审稿时长
49 days
期刊介绍: Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch. Aims and Scopes Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信