Akihiko Yamagishi , Kazuyoshi Takimoto , Risa Ito , Jun Yoshida , Hisako Sato
{"title":"Triplet-triplet annihilation up-conversion of cationic iridium(III) complex solubilized by organically-modified hectorite in a green solvent","authors":"Akihiko Yamagishi , Kazuyoshi Takimoto , Risa Ito , Jun Yoshida , Hisako Sato","doi":"10.1016/j.clay.2025.107828","DOIUrl":null,"url":null,"abstract":"<div><div>A cationic Ir (III) complex, [Ir(bzq)<sub>2</sub>(phen)]<sup>+</sup> (bzqH = benzo[<em>h</em>]quinoline; phen = 1,10-phenanthroline), was bound to colloidal particles of synthetic saponite (SAP) in 2:2:0.05 (v/v) methanol/dichloromethane/water. Upon the addition of 9,10-diphenylanthracne (DPA), the initial emission peak around 580 nm decreased with the simultaneous appearance of an emission peak at approximately 430 nm. These results implied that the Ir(III) complex as a donor achieved triplet-triplet annihilation up-conversion (TTA-UC) of the photon energy in DPA under air. The quantum yield was enhanced by hybridization with SAP. TTA-UC was also realized in an aprotic solvent mixture of 1:1 (v/v) toluene/<em>R</em>-limonene when the Ir (III) complex was solubilized using organically-modified hectorite. The utility of clay minerals for efficient energy up-conversion in a green solvent was demonstrated.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"272 ","pages":"Article 107828"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725001334","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A cationic Ir (III) complex, [Ir(bzq)2(phen)]+ (bzqH = benzo[h]quinoline; phen = 1,10-phenanthroline), was bound to colloidal particles of synthetic saponite (SAP) in 2:2:0.05 (v/v) methanol/dichloromethane/water. Upon the addition of 9,10-diphenylanthracne (DPA), the initial emission peak around 580 nm decreased with the simultaneous appearance of an emission peak at approximately 430 nm. These results implied that the Ir(III) complex as a donor achieved triplet-triplet annihilation up-conversion (TTA-UC) of the photon energy in DPA under air. The quantum yield was enhanced by hybridization with SAP. TTA-UC was also realized in an aprotic solvent mixture of 1:1 (v/v) toluene/R-limonene when the Ir (III) complex was solubilized using organically-modified hectorite. The utility of clay minerals for efficient energy up-conversion in a green solvent was demonstrated.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...