On the hybridizable discontinuous Galerkin method and superconvergence analysis for the diffusive viscous wave equation

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Lu Wang, Minfu Feng
{"title":"On the hybridizable discontinuous Galerkin method and superconvergence analysis for the diffusive viscous wave equation","authors":"Lu Wang,&nbsp;Minfu Feng","doi":"10.1016/j.amc.2025.129471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of <span><math><mi>m</mi><mo>+</mo><mn>1</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm where <em>m</em> is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of <span><math><mi>m</mi><mo>+</mo><mn>2</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical tests verify our analysis.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"501 ","pages":"Article 129471"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001973","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of m+1 in the L2 norm where m is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of m+2 in the L2 norm. Finally, numerical tests verify our analysis.
扩散粘性波动方程的可杂化不连续伽辽金方法及超收敛分析
研究了求解扩散粘性波动方程的可杂化不连续伽辽金(HDG)方法。我们提供了半离散和全离散格式的理论分析。我们的结果证明了位移和通量在L2范数中以m+1阶收敛,其中m是多项式的阶。我们还给出了一个超收敛分析,表明局部后处理变量在L2范数上以m+2阶收敛。最后,数值试验验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信