Javier Mauricio Anaya-Mancipe, Aline Luiza Machado Carlos, João Victor Dias de Assumpção Bastos, Elena Maria Tovar Ambel, Guillermo Velasco-Díez, Rosana Lopes Fialho and Rossana Mara da Silva Moreira Thiré*,
{"title":"Solution Blow Spun Mats with Beaded-Fiber Morphologies as a Drug Delivery System with Potential Use for Skin Wound Dressing","authors":"Javier Mauricio Anaya-Mancipe, Aline Luiza Machado Carlos, João Victor Dias de Assumpção Bastos, Elena Maria Tovar Ambel, Guillermo Velasco-Díez, Rosana Lopes Fialho and Rossana Mara da Silva Moreira Thiré*, ","doi":"10.1021/acsami.4c1667510.1021/acsami.4c16675","DOIUrl":null,"url":null,"abstract":"<p >The regeneration of skin injuries can be aided by tissue engineering strategies, which enable the recovery of the structural and functional integrity of the damaged tissue. The Solution Blow Spinning (SBS) technique has attracted the attention of researchers due to the production of nanofiber mats in a continuous process, which exhibit high porosity and the ability to deliver drugs locally. The objective of this work was to produce and encapsulate ibuprofen in mats of PCL/PEG as a fast-acting analgesic drug delivery system. Initially, beaded nanofiber structures were produced from PCL solutions in chloroform at 8% (w/v) and PCL/PEG solutions in mass ratios of 2:1 and 1:1. The influence of the PEG concentration, gas pressure (compressed air), and solution injection rate on the fibers’ morphology was analyzed by SEM. Then, the best condition for the formation of PCL/PEG beaded fiber structure was selected (1:1, 137.90 kPa, and 7.2 mL/h) for the fabrication of the mat containing ibuprofen at proportions of 5, 15, and 30% by polymer mass (PCL/PEG). The SBS-spun mats demonstrated a remarkable swelling capacity of approximately 400%, with bead presence enabling a gradual release of ibuprofen within the first 5 h. Additionally, the wound-healing assay confirmed that ibuprofen-loaded PCL/PEG<sub>8</sub> mats significantly promoted NF migration, suggesting their potential to accelerate the wound-healing process.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 16","pages":"23466–23483 23466–23483"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c16675","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c16675","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The regeneration of skin injuries can be aided by tissue engineering strategies, which enable the recovery of the structural and functional integrity of the damaged tissue. The Solution Blow Spinning (SBS) technique has attracted the attention of researchers due to the production of nanofiber mats in a continuous process, which exhibit high porosity and the ability to deliver drugs locally. The objective of this work was to produce and encapsulate ibuprofen in mats of PCL/PEG as a fast-acting analgesic drug delivery system. Initially, beaded nanofiber structures were produced from PCL solutions in chloroform at 8% (w/v) and PCL/PEG solutions in mass ratios of 2:1 and 1:1. The influence of the PEG concentration, gas pressure (compressed air), and solution injection rate on the fibers’ morphology was analyzed by SEM. Then, the best condition for the formation of PCL/PEG beaded fiber structure was selected (1:1, 137.90 kPa, and 7.2 mL/h) for the fabrication of the mat containing ibuprofen at proportions of 5, 15, and 30% by polymer mass (PCL/PEG). The SBS-spun mats demonstrated a remarkable swelling capacity of approximately 400%, with bead presence enabling a gradual release of ibuprofen within the first 5 h. Additionally, the wound-healing assay confirmed that ibuprofen-loaded PCL/PEG8 mats significantly promoted NF migration, suggesting their potential to accelerate the wound-healing process.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.