Electric-Field Molecular Fingerprinting to Probe Cancer

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kosmas V. Kepesidis, Philip Jacob, Wolfgang Schweinberger, Marinus Huber, Nico Feiler, Frank Fleischmann, Michael Trubetskov, Liudmila Voronina, Jacqueline Aschauer, Tarek Eissa, Lea Gigou, Patrik Karandušovsky, Ioachim Pupeza, Alexander Weigel, Abdallah Azzeer, Christian G. Stief, Michael Chaloupka, Niels Reinmuth, Jürgen Behr, Thomas Kolben, Nadia Harbeck, Maximilian Reiser, Ferenc Krausz and Mihaela Žigman*, 
{"title":"Electric-Field Molecular Fingerprinting to Probe Cancer","authors":"Kosmas V. Kepesidis,&nbsp;Philip Jacob,&nbsp;Wolfgang Schweinberger,&nbsp;Marinus Huber,&nbsp;Nico Feiler,&nbsp;Frank Fleischmann,&nbsp;Michael Trubetskov,&nbsp;Liudmila Voronina,&nbsp;Jacqueline Aschauer,&nbsp;Tarek Eissa,&nbsp;Lea Gigou,&nbsp;Patrik Karandušovsky,&nbsp;Ioachim Pupeza,&nbsp;Alexander Weigel,&nbsp;Abdallah Azzeer,&nbsp;Christian G. Stief,&nbsp;Michael Chaloupka,&nbsp;Niels Reinmuth,&nbsp;Jürgen Behr,&nbsp;Thomas Kolben,&nbsp;Nadia Harbeck,&nbsp;Maximilian Reiser,&nbsp;Ferenc Krausz and Mihaela Žigman*,&nbsp;","doi":"10.1021/acscentsci.4c0216410.1021/acscentsci.4c02164","DOIUrl":null,"url":null,"abstract":"<p >Human biofluids serve as indicators of various physiological states, and recent advances in molecular profiling technologies hold great potential for enhancing clinical diagnostics. Leveraging recent developments in laser-based electric-field molecular fingerprinting, we assess its potential for <i>in vitro</i> diagnostics. In a proof-of-concept clinical study involving 2533 participants, we conducted randomized measurement campaigns to spectroscopically profile bulk venous blood plasma across lung, prostate, breast, and bladder cancer. Employing machine learning, we detected infrared signatures specific to therapy-naı̈ve cancer states, distinguishing them from matched control individuals with a cross-validation ROC AUC of 0.88 for lung cancer and values ranging from 0.68 to 0.69 for the other three cancer entities. In an independent held-out test data set, designed to reflect different experimental conditions from those used during model training, we achieved a lung cancer detection ROC AUC of 0.81. Our study demonstrates that electric-field molecular fingerprinting is a robust technological framework broadly applicable to disease phenotyping under real-world conditions.</p><p >Laser-based infrared molecular fingerprinting detects cancer, demonstrating its potential for clinical disease diagnostics.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 4","pages":"560–573 560–573"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c02164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human biofluids serve as indicators of various physiological states, and recent advances in molecular profiling technologies hold great potential for enhancing clinical diagnostics. Leveraging recent developments in laser-based electric-field molecular fingerprinting, we assess its potential for in vitro diagnostics. In a proof-of-concept clinical study involving 2533 participants, we conducted randomized measurement campaigns to spectroscopically profile bulk venous blood plasma across lung, prostate, breast, and bladder cancer. Employing machine learning, we detected infrared signatures specific to therapy-naı̈ve cancer states, distinguishing them from matched control individuals with a cross-validation ROC AUC of 0.88 for lung cancer and values ranging from 0.68 to 0.69 for the other three cancer entities. In an independent held-out test data set, designed to reflect different experimental conditions from those used during model training, we achieved a lung cancer detection ROC AUC of 0.81. Our study demonstrates that electric-field molecular fingerprinting is a robust technological framework broadly applicable to disease phenotyping under real-world conditions.

Laser-based infrared molecular fingerprinting detects cancer, demonstrating its potential for clinical disease diagnostics.

电场分子指纹技术探测癌症
人体生物体液是各种生理状态的指示器,分子分析技术的最新进展在加强临床诊断方面具有很大的潜力。利用基于激光的电场分子指纹的最新发展,我们评估其体外诊断的潜力。在一项涉及2533名参与者的概念验证临床研究中,我们进行了随机测量活动,对肺癌、前列腺癌、乳腺癌和膀胱癌的大块静脉血进行光谱分析。利用机器学习,我们检测了特定于治疗性癌症状态的红外特征,将它们与匹配的对照个体区分开来,肺癌的交叉验证ROC AUC为0.88,其他三种癌症实体的值范围为0.68至0.69。在一个独立的测试数据集中,旨在反映不同于模型训练时使用的实验条件,我们实现了肺癌检测的ROC AUC为0.81。我们的研究表明,电场分子指纹是一个强大的技术框架,广泛适用于现实世界条件下的疾病表型。基于激光的红外分子指纹检测癌症,显示其在临床疾病诊断的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信