Ruibing Lv, Lei Sun, Zhenghang Luo, Yujie Song, Shuo Li and Qi Zhang,
{"title":"Host–Guest Synergy of Metal–Organic Frameworks for Enhanced Near-Infrared Ultrafast Laser Responsiveness","authors":"Ruibing Lv, Lei Sun, Zhenghang Luo, Yujie Song, Shuo Li and Qi Zhang, ","doi":"10.1021/acscentsci.5c0002210.1021/acscentsci.5c00022","DOIUrl":null,"url":null,"abstract":"<p >Host–guest metal–organic frameworks (MOFs) offer significant potential and value in regulating and optimizing novel material properties and functionalities, owing to the synergistic effects between the host framework and the guest units. This study reported two silver-based host–guest MOFs, [Ag(ATRZ)(BrO<sub>3</sub>)]<sub>n</sub> (CMOF-1) and [Ag(ATRZ)<sub>1.5</sub>(ClO<sub>4</sub>)]<sub>n</sub> (CMOF-2), as promising candidates for laser-responsive materials. These materials feature 1D and 3D structures, respectively, comprising Ag-ATRZ cationic MOF frameworks integrated with two distinct oxidizing anionic guests, BrO<sub>3</sub><sup>–</sup> and ClO<sub>4</sub><sup>–</sup>. CMOF-1 and CMOF-2 are synthesized through straightforward, environmentally benign methods, enabling rapid fabrication. The exceptional near-infrared (NIR) laser responsiveness of CMOF-1 and CMOF-2 was achieved through the modulation of the cationic MOFs (CMOFs) architectures and synergistic interactions between the host and guest components. Moreover, both exhibit ultrafast deflagration-to-detonation transition (DDT) capabilities, alongside excellent thermal stability. This work expands the application scope of host–guest MOFs, and provides an effective strategy for developing high-performance laser-responsive materials.</p><p >This study reports Ag-based host−guest MOFs with ultrafast NIR laser responsiveness: CMOF-1 and CMOF-2, which exhibit excellent ultrafast deflagration-to-detonation transition and thermal stability.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 4","pages":"583–591 583–591"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.5c00022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Host–guest metal–organic frameworks (MOFs) offer significant potential and value in regulating and optimizing novel material properties and functionalities, owing to the synergistic effects between the host framework and the guest units. This study reported two silver-based host–guest MOFs, [Ag(ATRZ)(BrO3)]n (CMOF-1) and [Ag(ATRZ)1.5(ClO4)]n (CMOF-2), as promising candidates for laser-responsive materials. These materials feature 1D and 3D structures, respectively, comprising Ag-ATRZ cationic MOF frameworks integrated with two distinct oxidizing anionic guests, BrO3– and ClO4–. CMOF-1 and CMOF-2 are synthesized through straightforward, environmentally benign methods, enabling rapid fabrication. The exceptional near-infrared (NIR) laser responsiveness of CMOF-1 and CMOF-2 was achieved through the modulation of the cationic MOFs (CMOFs) architectures and synergistic interactions between the host and guest components. Moreover, both exhibit ultrafast deflagration-to-detonation transition (DDT) capabilities, alongside excellent thermal stability. This work expands the application scope of host–guest MOFs, and provides an effective strategy for developing high-performance laser-responsive materials.
This study reports Ag-based host−guest MOFs with ultrafast NIR laser responsiveness: CMOF-1 and CMOF-2, which exhibit excellent ultrafast deflagration-to-detonation transition and thermal stability.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.