Analysis of spectral Galerkin method with higher order time discretization for the nonlinear stochastic Fisher's type equation driven by multiplicative noise

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Huanrong Li , Rushuang Yang
{"title":"Analysis of spectral Galerkin method with higher order time discretization for the nonlinear stochastic Fisher's type equation driven by multiplicative noise","authors":"Huanrong Li ,&nbsp;Rushuang Yang","doi":"10.1016/j.camwa.2025.04.016","DOIUrl":null,"url":null,"abstract":"<div><div>This paper primarily focuses on developing a high-order-in-time spectral Galerkin approximation method for nonlinear stochastic Fisher's type equations driven by multiplicative noise. For this reason, we first design an improved discretization scheme in time based on the Milstein method, and then propose a spectral Galerkin approximation method in space. We analyze the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> stability and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stability estimations for numerical solutions of the proposed fully discrete spectral Galerkin approximation formulation under reasonable assumptions about the multiplicative noise function <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> and the nonlinear multiplicative function <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span>. Additionally, we achieve nearly optimal error convergence orders in both space and time. Especially, the time convergence order almost reaches 1 under the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, several numerical experiments are carried out for the stochastic Fisher's type models to validate all the theoretical results, and it can also be seen that the numerical results are consistent with the physical properties of the Fisher's equation.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 90-102"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001610","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper primarily focuses on developing a high-order-in-time spectral Galerkin approximation method for nonlinear stochastic Fisher's type equations driven by multiplicative noise. For this reason, we first design an improved discretization scheme in time based on the Milstein method, and then propose a spectral Galerkin approximation method in space. We analyze the H1 stability and L2 stability estimations for numerical solutions of the proposed fully discrete spectral Galerkin approximation formulation under reasonable assumptions about the multiplicative noise function g(u) and the nonlinear multiplicative function f(u(x,t)). Additionally, we achieve nearly optimal error convergence orders in both space and time. Especially, the time convergence order almost reaches 1 under the L2 norm. Finally, several numerical experiments are carried out for the stochastic Fisher's type models to validate all the theoretical results, and it can also be seen that the numerical results are consistent with the physical properties of the Fisher's equation.
乘性噪声驱动下非线性随机Fisher型方程的高阶时间离散化谱伽辽金方法分析
本文主要研究由乘性噪声驱动的非线性随机Fisher型方程的高阶时域谱伽辽金近似方法。为此,我们首先基于Milstein方法设计了一种改进的时间离散化方案,然后在空间上提出了一种谱伽辽金近似方法。在关于乘性噪声函数g(u)和非线性乘性函数f(u(x,t))的合理假设下,分析了所提出的全离散谱Galerkin近似公式数值解的H1稳定性和L2稳定性估计。此外,我们在空间和时间上都实现了近乎最优的误差收敛顺序。特别是在L2范数下,时间收敛阶几乎达到1。最后,对随机Fisher型模型进行了多次数值实验,验证了所有理论结果,也可以看出数值结果与Fisher方程的物理性质是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信