Yu Shen , Jianwei Zhang , Shulin Chen , Ke Qu , Zhenzhong Yang , Yong Peng
{"title":"Advances of transmission electron microscopy research for lithium-ion batteries","authors":"Yu Shen , Jianwei Zhang , Shulin Chen , Ke Qu , Zhenzhong Yang , Yong Peng","doi":"10.1016/j.nanoen.2025.111065","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced transmission electron microscopy (TEM) have emerged as powerful tools for investigating the complex electrochemical processes and failure mechanisms in lithium-ion batteries at both the nanoscale and atomic levels. Advanced static TEM methods, such as electron energy loss spectroscopy (EELS), electron holography (EH), cryo-electron microscopy (cryo-EM), differential phase contrast (DPC), and four-dimensional scanning TEM (4D STEM), have provided unprecedented insights into electrode materials, solid electrolytes, and interface structures. On this foundation, multi-field in-situ TEM techniques have been developed to dynamically study the structural and chemical evolution of battery materials during electrochemical cycling in real-time. This paper reviews both static (ex-situ) studies using high-resolution electron microscopy and the recently developed dynamic (in-situ/operando) TEM techniques for battery research. We first summarize the development of advanced TEM characterization methods and their applications in lithium-ion batteries. We then focus on key findings related to lithiation/delithiation mechanisms, interface phenomena, thermal stability, mechanical degradation of battery materials in response to electrochemical cycling, as well as the effects of applied electric, thermal, and mechanical fields in-situ. This review systematically illustrates how advanced TEM characterization techniques can bridge atomic-scale observations with macroscopic battery behavior, ultimately enhancing battery performance and safety while accelerating the design and development of next-generation batteries.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"140 ","pages":"Article 111065"},"PeriodicalIF":16.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525004240","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced transmission electron microscopy (TEM) have emerged as powerful tools for investigating the complex electrochemical processes and failure mechanisms in lithium-ion batteries at both the nanoscale and atomic levels. Advanced static TEM methods, such as electron energy loss spectroscopy (EELS), electron holography (EH), cryo-electron microscopy (cryo-EM), differential phase contrast (DPC), and four-dimensional scanning TEM (4D STEM), have provided unprecedented insights into electrode materials, solid electrolytes, and interface structures. On this foundation, multi-field in-situ TEM techniques have been developed to dynamically study the structural and chemical evolution of battery materials during electrochemical cycling in real-time. This paper reviews both static (ex-situ) studies using high-resolution electron microscopy and the recently developed dynamic (in-situ/operando) TEM techniques for battery research. We first summarize the development of advanced TEM characterization methods and their applications in lithium-ion batteries. We then focus on key findings related to lithiation/delithiation mechanisms, interface phenomena, thermal stability, mechanical degradation of battery materials in response to electrochemical cycling, as well as the effects of applied electric, thermal, and mechanical fields in-situ. This review systematically illustrates how advanced TEM characterization techniques can bridge atomic-scale observations with macroscopic battery behavior, ultimately enhancing battery performance and safety while accelerating the design and development of next-generation batteries.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.