Insight into remarkable oil superlubricity enabled by polyether-modified silicone oil on engineering steel

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Qiang Ma, Chengpeng Yan, Xin Xu, Meidi Liang, Ke Hua, Haifeng Wang
{"title":"Insight into remarkable oil superlubricity enabled by polyether-modified silicone oil on engineering steel","authors":"Qiang Ma, Chengpeng Yan, Xin Xu, Meidi Liang, Ke Hua, Haifeng Wang","doi":"10.26599/frict.2025.9441034","DOIUrl":null,"url":null,"abstract":"<p>The achievement of a superlubric state with vanishing friction and negligible wear has important applications in minimizing energy dissipation and prolonging the service life of moving mechanical systems. However, the search for a superlubricious oil system applicable to industrial fields remains a major challenge. In this work, we demonstrate for the first time that precisely employing polyether modification for silicone oil molecules could induce direct superlubricity and superlow wear for engineering steel tribopairs. Superlubricity originates from the fact that polyether-modified silicone oil (PESO) can effectively employ polyether functional groups to interact with friction surfaces, during which a complex tribochemical reaction process can be induced under the catalytic role of friction, where an organic lubricious film composed mainly of carbon, silicon and oxygen can be induced in situ, which can not only effectively passivate friction surfaces but also enable superlubric sliding by virtue of its easy-to-shear nature. Furthermore, iron oxides and chromium oxides could also be confirmed to be distributed within the tribofilm, which is desirable for increasing the load-bearing capability of the tribofilm and toughness. Thus, a remarkable superlubricity of 0.01 without running-in combined with superlow wear was realized at the same time. The results of this work show high promise in promoting the industrial use of oil superlubricity and revolutionizing the development of mechanical systems.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"33 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441034","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The achievement of a superlubric state with vanishing friction and negligible wear has important applications in minimizing energy dissipation and prolonging the service life of moving mechanical systems. However, the search for a superlubricious oil system applicable to industrial fields remains a major challenge. In this work, we demonstrate for the first time that precisely employing polyether modification for silicone oil molecules could induce direct superlubricity and superlow wear for engineering steel tribopairs. Superlubricity originates from the fact that polyether-modified silicone oil (PESO) can effectively employ polyether functional groups to interact with friction surfaces, during which a complex tribochemical reaction process can be induced under the catalytic role of friction, where an organic lubricious film composed mainly of carbon, silicon and oxygen can be induced in situ, which can not only effectively passivate friction surfaces but also enable superlubric sliding by virtue of its easy-to-shear nature. Furthermore, iron oxides and chromium oxides could also be confirmed to be distributed within the tribofilm, which is desirable for increasing the load-bearing capability of the tribofilm and toughness. Thus, a remarkable superlubricity of 0.01 without running-in combined with superlow wear was realized at the same time. The results of this work show high promise in promoting the industrial use of oil superlubricity and revolutionizing the development of mechanical systems.

Abstract Image

洞察聚醚改性硅油在工程钢上的卓越超润滑性
实现摩擦消失、磨损可忽略的超润滑状态,对于减少运动机械系统的能量消耗和延长其使用寿命具有重要的应用价值。然而,寻找一种适用于工业领域的超润滑油体系仍然是一个重大挑战。在这项工作中,我们首次证明了精确地对硅油分子进行聚醚改性可以诱导工程钢摩擦副的直接超润滑和超低磨损。超润滑性源于聚醚改性硅油(PESO)可以有效地利用聚醚官能团与摩擦表面相互作用,在摩擦的催化作用下诱发复杂的摩擦化学反应过程,在原位诱导形成主要由碳、硅、氧组成的有机润滑膜。既能有效钝化摩擦面,又能利用超润滑剂易剪切的特性使其滑动。此外,铁氧化物和铬氧化物也可被证实分布在摩擦膜内,这有利于提高摩擦膜的承载能力和韧性。因此,在无磨合的情况下,实现了0.01的超润滑性和超低磨损。这项工作的结果在促进油超润滑的工业应用和彻底改变机械系统的发展方面显示出很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信