Yuzhe Zhang, Lu Chen, Xiaoqing Yan, Wenkai Teng, Honghui Ou, He Li, Qizhong Huang, Huagui Hu, Guidong Yang
{"title":"Dual-reaction pathway engineering via anode-driven methanol oxidation for efficient electrocatalytic ammonia production","authors":"Yuzhe Zhang, Lu Chen, Xiaoqing Yan, Wenkai Teng, Honghui Ou, He Li, Qizhong Huang, Huagui Hu, Guidong Yang","doi":"10.1002/aic.18849","DOIUrl":null,"url":null,"abstract":"Replacing the anodic oxygen evolution reaction with selective methanol oxidation to formic acid offers a promising route to enhance paired electrochemical ammonia synthesis. However, the inherent kinetic and thermodynamic disparities between the cathodic reduction reaction and anodic oxidation reaction present significant challenges in achieving optimal electrochemical system performance. Herein, we propose a dual-reaction strategy employing bifunctional Au/CoOOH nanocomposite catalysts, achieving simultaneous NH<sub>3</sub> production (34.15 g) and formic acid synthesis (69.65 g) after 24 h at 2.6 V cell voltage. Density functional theory (DFT) calculations further reveal that loading in Co-based catalysts and its hybridization with Au nanoparticles can effectively tune the electronic configuration of the Co-O sites to poison their strong adsorption capacity of intermediate products, lowering the reaction energy barrier to alter the reaction pathway. This work provides an atomic-level design principle for coupled electrochemical systems, demonstrating better reaction efficiency, while co-producing high-value chemicals for scalable green ammonia synthesis.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"49 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18849","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Replacing the anodic oxygen evolution reaction with selective methanol oxidation to formic acid offers a promising route to enhance paired electrochemical ammonia synthesis. However, the inherent kinetic and thermodynamic disparities between the cathodic reduction reaction and anodic oxidation reaction present significant challenges in achieving optimal electrochemical system performance. Herein, we propose a dual-reaction strategy employing bifunctional Au/CoOOH nanocomposite catalysts, achieving simultaneous NH3 production (34.15 g) and formic acid synthesis (69.65 g) after 24 h at 2.6 V cell voltage. Density functional theory (DFT) calculations further reveal that loading in Co-based catalysts and its hybridization with Au nanoparticles can effectively tune the electronic configuration of the Co-O sites to poison their strong adsorption capacity of intermediate products, lowering the reaction energy barrier to alter the reaction pathway. This work provides an atomic-level design principle for coupled electrochemical systems, demonstrating better reaction efficiency, while co-producing high-value chemicals for scalable green ammonia synthesis.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.