Xiujuan Wang, Xinshan Zhang, Yuanyuan Liu, Lei Ru, Guochao Yan, Yunmin Xu, Youjian Yu, Zhujun Zhu, Yong He
{"title":"miR398-SlCSD1 module participates in the SA-H2O2 amplifying feedback loop in Solanum lycopersicum","authors":"Xiujuan Wang, Xinshan Zhang, Yuanyuan Liu, Lei Ru, Guochao Yan, Yunmin Xu, Youjian Yu, Zhujun Zhu, Yong He","doi":"10.1016/j.jare.2025.04.035","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Salicylic acid (SA) is essential for immune response signal transduction in higher plants, with its signaling thought to be enhanced through interactions with reactive oxygen species (ROS). However, the exact mechanisms behind this SA self-amplifying signaling are still not well understood.<h3>Objectives</h3>In this study, we report the involvement of the miR398b-SlCSD1 module in the SA-H<sub>2</sub>O<sub>2</sub> amplifying feedback loop in tomato (<em>Solanum lycopersicum</em>).<h3>Methods</h3>Experiments were conducted using various concentrations of SA to assess its impact on ROS metabolism and the expression of SlCSD1 and sly-miR398. CRISPR/Cas9 was employed to knock out sly-miR398 and SlCSD1. Bioinformatics analyses, dual-luciferase reporter assays (Dual-Luc), and electrophoretic mobility shift assays (EMSA) were used to identify SA-responsive transcription factors and validate their regulation of sly-miR398b. The role of miR398 in endogenous SA synthesis was examined using overexpression and knockout tomato lines.<h3>Results</h3>Low SA concentrations stimulated H<sub>2</sub>O<sub>2</sub> accumulation, increased superoxide dismutase (SOD) activity, and suppressed sly-miR398 expression, effects absent in NahG plants with reduced SA levels. Knockout of SlCSD1 via CRISPR/Cas9 partially inhibited SA-induced H<sub>2</sub>O<sub>2</sub> accumulation, confirming SlCSD1′s role in SA-dependent H<sub>2</sub>O<sub>2</sub> signaling. Furthermore, Dual-Luc and EMSA results revealed that TGACG-sequence-specific binding protein 2 (TGA2) mediated the regulation of miR398-SlCSD1 module by SA in tomato. Additionally, overexpression and mutation of sly-miR398b promoted SA synthesis via the phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) pathways, highlighting its regulatory role in SA biosynthesis.<h3>Conclusion</h3>Taken together, our results shed light on the involvement of the miR398-SlCSD1 module in the SA-H<sub>2</sub>O<sub>2</sub> amplifying feedback loop, providing new insights into SA signaling in tomato. These findings contribute to understanding SA-ROS interactions and offer a potential strategy for enhancing stress tolerance in crops by targeting microRNA-regulated pathways.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"6 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.04.035","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Salicylic acid (SA) is essential for immune response signal transduction in higher plants, with its signaling thought to be enhanced through interactions with reactive oxygen species (ROS). However, the exact mechanisms behind this SA self-amplifying signaling are still not well understood.
Objectives
In this study, we report the involvement of the miR398b-SlCSD1 module in the SA-H2O2 amplifying feedback loop in tomato (Solanum lycopersicum).
Methods
Experiments were conducted using various concentrations of SA to assess its impact on ROS metabolism and the expression of SlCSD1 and sly-miR398. CRISPR/Cas9 was employed to knock out sly-miR398 and SlCSD1. Bioinformatics analyses, dual-luciferase reporter assays (Dual-Luc), and electrophoretic mobility shift assays (EMSA) were used to identify SA-responsive transcription factors and validate their regulation of sly-miR398b. The role of miR398 in endogenous SA synthesis was examined using overexpression and knockout tomato lines.
Results
Low SA concentrations stimulated H2O2 accumulation, increased superoxide dismutase (SOD) activity, and suppressed sly-miR398 expression, effects absent in NahG plants with reduced SA levels. Knockout of SlCSD1 via CRISPR/Cas9 partially inhibited SA-induced H2O2 accumulation, confirming SlCSD1′s role in SA-dependent H2O2 signaling. Furthermore, Dual-Luc and EMSA results revealed that TGACG-sequence-specific binding protein 2 (TGA2) mediated the regulation of miR398-SlCSD1 module by SA in tomato. Additionally, overexpression and mutation of sly-miR398b promoted SA synthesis via the phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) pathways, highlighting its regulatory role in SA biosynthesis.
Conclusion
Taken together, our results shed light on the involvement of the miR398-SlCSD1 module in the SA-H2O2 amplifying feedback loop, providing new insights into SA signaling in tomato. These findings contribute to understanding SA-ROS interactions and offer a potential strategy for enhancing stress tolerance in crops by targeting microRNA-regulated pathways.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.