{"title":"Electrical Control of Polariton Josephson Junctions via Exciton Stark Effect","authors":"Hua Wang, Hong-Yi Xie, Kieran Mullen","doi":"10.1021/acs.nanolett.5c00442","DOIUrl":null,"url":null,"abstract":"We propose harnessing the tools of modern nanofabrication to provide electrical control of exciton–polariton (EP) condensates. We develop the theory of a device based on the Josephson effect in which electric fields can be used to both switch between and monitor various dynamical modes. In particular, both the bias potential and the Josephson energy can be tuned electrically via the exciton component. We model the device by a Gross–Pitaevskii equation assuming that ideal EP condensates are established with well-balanced pumping and dissipation. We find that the EP condensates can be manipulated through degrees of freedom not easily accessible in other coherent quantum systems, and the dynamics of EP Josephson junctions are richer than that of the conventional superconducting junctions. The ability to control and monitor the condensate by both optical and electrical means allows new ways to study its physics not possible by either, alone.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"27 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00442","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose harnessing the tools of modern nanofabrication to provide electrical control of exciton–polariton (EP) condensates. We develop the theory of a device based on the Josephson effect in which electric fields can be used to both switch between and monitor various dynamical modes. In particular, both the bias potential and the Josephson energy can be tuned electrically via the exciton component. We model the device by a Gross–Pitaevskii equation assuming that ideal EP condensates are established with well-balanced pumping and dissipation. We find that the EP condensates can be manipulated through degrees of freedom not easily accessible in other coherent quantum systems, and the dynamics of EP Josephson junctions are richer than that of the conventional superconducting junctions. The ability to control and monitor the condensate by both optical and electrical means allows new ways to study its physics not possible by either, alone.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.