Susan Westfall, Maria E. Gentile, Tayla M. Olsen, Danielle Karo-Atar, Andrei Bogza, Franziska Röstel, Ryan D. Pardy, Giordano Mandato, Ghislaine Fontes, De’Broski Herbert, Heather J. Melichar, Valerie Abadie, Martin J. Richer, Donald C. Vinh, Joshua F.E. Koenig, Oliver J. Harrison, Maziar Divangahi, Sebastian Weis, Alex Gregorieff, Irah L. King
{"title":"A type 1 immune-stromal cell network mediates disease tolerance against intestinal infection","authors":"Susan Westfall, Maria E. Gentile, Tayla M. Olsen, Danielle Karo-Atar, Andrei Bogza, Franziska Röstel, Ryan D. Pardy, Giordano Mandato, Ghislaine Fontes, De’Broski Herbert, Heather J. Melichar, Valerie Abadie, Martin J. Richer, Donald C. Vinh, Joshua F.E. Koenig, Oliver J. Harrison, Maziar Divangahi, Sebastian Weis, Alex Gregorieff, Irah L. King","doi":"10.1016/j.cell.2025.03.043","DOIUrl":null,"url":null,"abstract":"Type 1 immunity mediates host defense through pathogen elimination, but whether this pathway also impacts tissue function is unknown. Here, we demonstrate that rapid induction of interferon γ (IFNγ) signaling coordinates a multicellular response that is critical to limit tissue damage and maintain gut motility following infection of mice with a tissue-invasive helminth. IFNγ production is initiated by antigen-independent activation of lamina propria CD8<sup>+</sup> T cells following MyD88-dependent recognition of the microbiota during helminth-induced barrier invasion. IFNγ acted directly on intestinal stromal cells to recruit neutrophils that limited parasite-induced tissue injury. IFNγ sensing also limited the expansion of smooth muscle actin-expressing cells to prevent pathological gut dysmotility. Importantly, this tissue-protective response did not impact parasite burden, indicating that IFNγ supports a disease tolerance defense strategy. Our results have important implications for managing the pathophysiological sequelae of post-infectious gut dysfunction and chronic inflammatory diseases associated with stromal remodeling.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"7 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.03.043","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 immunity mediates host defense through pathogen elimination, but whether this pathway also impacts tissue function is unknown. Here, we demonstrate that rapid induction of interferon γ (IFNγ) signaling coordinates a multicellular response that is critical to limit tissue damage and maintain gut motility following infection of mice with a tissue-invasive helminth. IFNγ production is initiated by antigen-independent activation of lamina propria CD8+ T cells following MyD88-dependent recognition of the microbiota during helminth-induced barrier invasion. IFNγ acted directly on intestinal stromal cells to recruit neutrophils that limited parasite-induced tissue injury. IFNγ sensing also limited the expansion of smooth muscle actin-expressing cells to prevent pathological gut dysmotility. Importantly, this tissue-protective response did not impact parasite burden, indicating that IFNγ supports a disease tolerance defense strategy. Our results have important implications for managing the pathophysiological sequelae of post-infectious gut dysfunction and chronic inflammatory diseases associated with stromal remodeling.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.