Shengbo Wang, Xiuli Hou, Yichan Li, Chen Zhou, Peng Zhang, Chun Hu
{"title":"From Single-Atom to Dual-Atom: A Universal Principle for the Rational Design of Heterogeneous Fenton-like Catalysts","authors":"Shengbo Wang, Xiuli Hou, Yichan Li, Chen Zhou, Peng Zhang, Chun Hu","doi":"10.1021/acs.est.4c13826","DOIUrl":null,"url":null,"abstract":"Developing efficient heterogeneous Fenton-like catalysts is the key point to accelerating the removal of organic micropollutants in the advanced oxidation process. However, a general principle guiding the reasonable design of highly efficient heterogeneous Fenton-like catalysts has not been constructed up to now. In this work, a total of 16 single-atom and 272 dual-atom transition metal/nitrogen/carbon (TM/N/C) catalysts for H<sub>2</sub>O<sub>2</sub> dissociation were explored systematically based on high-throughput density functional theory and machine learning. It was found that H<sub>2</sub>O<sub>2</sub> dissociation on single-atom TM/N/C exhibited a distinct volcano-type relationship between catalytic activity and <sup>•</sup>OH adsorption energy. The favorable <sup>•</sup>OH adsorption energies were in the range of −3.11 ∼ −2.20 eV. Three different descriptors, namely, energetic, electronic, and structural descriptors, were found, which can correlate the intrinsic properties of catalysts and their catalytic activity. Using adsorption energy, stability, and activation energy as the evaluation criteria, two dual-atom CoCu/N/C and CoRu/N/C catalysts were screened out from 272 candidates, which exhibited higher catalytic activity than the best single-atom TM/N/C catalyst due to the synergistic effect. This work could present a conceptually novel understanding of H<sub>2</sub>O<sub>2</sub> dissociation on TM/N/C and inspire the structure-oriented catalyst design from the viewpoint of volcano relationship.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"7 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13826","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient heterogeneous Fenton-like catalysts is the key point to accelerating the removal of organic micropollutants in the advanced oxidation process. However, a general principle guiding the reasonable design of highly efficient heterogeneous Fenton-like catalysts has not been constructed up to now. In this work, a total of 16 single-atom and 272 dual-atom transition metal/nitrogen/carbon (TM/N/C) catalysts for H2O2 dissociation were explored systematically based on high-throughput density functional theory and machine learning. It was found that H2O2 dissociation on single-atom TM/N/C exhibited a distinct volcano-type relationship between catalytic activity and •OH adsorption energy. The favorable •OH adsorption energies were in the range of −3.11 ∼ −2.20 eV. Three different descriptors, namely, energetic, electronic, and structural descriptors, were found, which can correlate the intrinsic properties of catalysts and their catalytic activity. Using adsorption energy, stability, and activation energy as the evaluation criteria, two dual-atom CoCu/N/C and CoRu/N/C catalysts were screened out from 272 candidates, which exhibited higher catalytic activity than the best single-atom TM/N/C catalyst due to the synergistic effect. This work could present a conceptually novel understanding of H2O2 dissociation on TM/N/C and inspire the structure-oriented catalyst design from the viewpoint of volcano relationship.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.