An enzymatic dual-oxa Diels–Alder reaction constructs the oxygen-bridged tricyclic acetal unit of (–)-anthrabenzoxocinone

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoli Yan, Xinying Jia, Zhenyao Luo, Shunjia Ji, Meng-Jie Zhang, Hui Zhang, Mingjia Yu, Julien Orts, Kai Jiang, Zhi Lin, Zixin Deng, Xu-Dong Kong, Bostjan Kobe, Yi-Lei Zhao, Mehdi Mobli, Xudong Qu
{"title":"An enzymatic dual-oxa Diels–Alder reaction constructs the oxygen-bridged tricyclic acetal unit of (–)-anthrabenzoxocinone","authors":"Xiaoli Yan, Xinying Jia, Zhenyao Luo, Shunjia Ji, Meng-Jie Zhang, Hui Zhang, Mingjia Yu, Julien Orts, Kai Jiang, Zhi Lin, Zixin Deng, Xu-Dong Kong, Bostjan Kobe, Yi-Lei Zhao, Mehdi Mobli, Xudong Qu","doi":"10.1038/s41557-025-01804-0","DOIUrl":null,"url":null,"abstract":"<p>The hetero-Diels–Alder (HDA) reaction is a key method for synthesizing six-membered heterocyclic rings in natural products and bioactive compounds. Despite its importance in synthetic chemistry, naturally occurring enzymatic HDA reactions are rare and limited to a single heteroatom. Here we report Abx<sub>(−)</sub>F, a bifunctional vicinal oxygen chelate (VOC)-like protein that catalyses dehydration and dual-oxa Diels–Alder reactions to stereoselectively form the oxygen-bridged tricyclic acetal of (–)-anthrabenzoxocinone ((−)-ABX). Isotope assays and density functional theory calculations reveal a dehydration-coordinated, concerted HDA mechanism. The crystal structure of Abx<sub>(−)</sub>F and NMR complex structures of Abx<sub>(−)</sub>F with its substrate analogue and (−)-ABX define the reaction’s structural basis. Mutational analysis identifies Asp17 as a general base that mediates dehydration, forming an <i>o</i>-quinone methide intermediate for stereoselective dual-oxa HDA. This work establishes the molecular and structural basis of a polyheteroatomic Diels–Alderase, paving the way for designing polyheteroatomic DA enzymatic tools.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"29 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01804-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hetero-Diels–Alder (HDA) reaction is a key method for synthesizing six-membered heterocyclic rings in natural products and bioactive compounds. Despite its importance in synthetic chemistry, naturally occurring enzymatic HDA reactions are rare and limited to a single heteroatom. Here we report Abx(−)F, a bifunctional vicinal oxygen chelate (VOC)-like protein that catalyses dehydration and dual-oxa Diels–Alder reactions to stereoselectively form the oxygen-bridged tricyclic acetal of (–)-anthrabenzoxocinone ((−)-ABX). Isotope assays and density functional theory calculations reveal a dehydration-coordinated, concerted HDA mechanism. The crystal structure of Abx(−)F and NMR complex structures of Abx(−)F with its substrate analogue and (−)-ABX define the reaction’s structural basis. Mutational analysis identifies Asp17 as a general base that mediates dehydration, forming an o-quinone methide intermediate for stereoselective dual-oxa HDA. This work establishes the molecular and structural basis of a polyheteroatomic Diels–Alderase, paving the way for designing polyheteroatomic DA enzymatic tools.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信