Multiple sclerosis and gut microbiota: Lachnospiraceae from the ileum of MS twins trigger MS-like disease in germfree transgenic mice—An unbiased functional study
Hongsup Yoon, Lisa Ann Gerdes, Florian Beigel, Yihui Sun, Janine Kövilein, Jiancheng Wang, Tanja Kuhlmann, Andrea Flierl-Hecht, Dirk Haller, Reinhard Hohlfeld, Sergio E. Baranzini, Hartmut Wekerle, Anneli Peters
{"title":"Multiple sclerosis and gut microbiota: Lachnospiraceae from the ileum of MS twins trigger MS-like disease in germfree transgenic mice—An unbiased functional study","authors":"Hongsup Yoon, Lisa Ann Gerdes, Florian Beigel, Yihui Sun, Janine Kövilein, Jiancheng Wang, Tanja Kuhlmann, Andrea Flierl-Hecht, Dirk Haller, Reinhard Hohlfeld, Sergio E. Baranzini, Hartmut Wekerle, Anneli Peters","doi":"10.1073/pnas.2419689122","DOIUrl":null,"url":null,"abstract":"We developed a two-tiered strategy aiming to identify gut bacteria functionally linked to the development of multiple sclerosis (MS). First, we compared gut microbial profiles in a cohort of 81 monozygotic twins discordant for MS. This approach allowed to minimize confounding effects by genetic and early environmental factors and identified over 50 differently abundant taxa with the majority of increased taxa within the <jats:italic>Firmicutes</jats:italic> . These included taxa previously described to be associated with MS ( <jats:italic>Anaerotruncus colihominis</jats:italic> and <jats:italic>Eisenbergiella tayi</jats:italic> ), along with newly identified taxa, such as <jats:italic>Copromonas</jats:italic> and <jats:italic>Acutalibacter</jats:italic> . Second, we interrogated the intestinal habitat and functional impact of individual taxa on the development of MS-like disease. In an exploratory approach, we enteroscopically sampled microbiota from different gut segments of selected twin pairs and compared their compositional profiles. To assess their functional potential, samples were orally transferred into germfree transgenic mice prone to develop spontaneous MS-like experimental autoimmune encephalomyelitis (EAE) upon bacterial colonization. We found that MS-derived ileal microbiota induced EAE at substantially higher rates than analogous material from healthy twin donors. Furthermore, female mice were more susceptible to disease development than males. The likely active organisms were identified as <jats:italic>Eisenbergiella tayi</jats:italic> and <jats:italic>Lachnoclostridium,</jats:italic> members of the Lachnospiraceae family. Our results identify potentially disease-facilitating bacteria sampled from the ileum of MS affected twins. The experimental strategy may pave the way to functionally understand the role of gut microbiota in initiation of MS.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"64 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419689122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a two-tiered strategy aiming to identify gut bacteria functionally linked to the development of multiple sclerosis (MS). First, we compared gut microbial profiles in a cohort of 81 monozygotic twins discordant for MS. This approach allowed to minimize confounding effects by genetic and early environmental factors and identified over 50 differently abundant taxa with the majority of increased taxa within the Firmicutes . These included taxa previously described to be associated with MS ( Anaerotruncus colihominis and Eisenbergiella tayi ), along with newly identified taxa, such as Copromonas and Acutalibacter . Second, we interrogated the intestinal habitat and functional impact of individual taxa on the development of MS-like disease. In an exploratory approach, we enteroscopically sampled microbiota from different gut segments of selected twin pairs and compared their compositional profiles. To assess their functional potential, samples were orally transferred into germfree transgenic mice prone to develop spontaneous MS-like experimental autoimmune encephalomyelitis (EAE) upon bacterial colonization. We found that MS-derived ileal microbiota induced EAE at substantially higher rates than analogous material from healthy twin donors. Furthermore, female mice were more susceptible to disease development than males. The likely active organisms were identified as Eisenbergiella tayi and Lachnoclostridium, members of the Lachnospiraceae family. Our results identify potentially disease-facilitating bacteria sampled from the ileum of MS affected twins. The experimental strategy may pave the way to functionally understand the role of gut microbiota in initiation of MS.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.