Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans

IF 17.3 1区 生物学 Q1 CELL BIOLOGY
Marta Torregrossa, Lindsay Davies, Machens Hans-Günther, Jan C. Simon, Sandra Franz, Yuval Rinkevich
{"title":"Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans","authors":"Marta Torregrossa, Lindsay Davies, Machens Hans-Günther, Jan C. Simon, Sandra Franz, Yuval Rinkevich","doi":"10.1038/s41556-025-01638-5","DOIUrl":null,"url":null,"abstract":"<p>Fibroblasts, once perceived as a uniform cell type, are now recognized as a mosaic of distinct populations with specialized roles in tissue homeostasis and pathology. Here we provide a global overview of the expanding compendium of fibroblast cell types and states, their diverse lineage origins and multifaceted functions across various human organs. By integrating insights from developmental biology, lineage tracing and single-cell technologies, we highlight the complex nature of fibroblasts. We delve into their origination from embryonic mesenchyme and tissue-resident populations, elucidating lineage-specific behaviours in response to physiological cues. Furthermore, we highlight the pivotal role of fibroblasts in orchestrating tissue repair, connective tissue remodelling and immune modulation across diverse pathologies. This knowledge is essential to develop novel fibroblast-targeted therapies to restore steady-state fibroblast function and advance regenerative medicine strategies across multiple diseases.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"47 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01638-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblasts, once perceived as a uniform cell type, are now recognized as a mosaic of distinct populations with specialized roles in tissue homeostasis and pathology. Here we provide a global overview of the expanding compendium of fibroblast cell types and states, their diverse lineage origins and multifaceted functions across various human organs. By integrating insights from developmental biology, lineage tracing and single-cell technologies, we highlight the complex nature of fibroblasts. We delve into their origination from embryonic mesenchyme and tissue-resident populations, elucidating lineage-specific behaviours in response to physiological cues. Furthermore, we highlight the pivotal role of fibroblasts in orchestrating tissue repair, connective tissue remodelling and immune modulation across diverse pathologies. This knowledge is essential to develop novel fibroblast-targeted therapies to restore steady-state fibroblast function and advance regenerative medicine strategies across multiple diseases.

Abstract Image

胚胎来源、组织线索和病理信号对人类成纤维细胞多样性的影响
成纤维细胞,曾经被认为是一种统一的细胞类型,现在被认为是不同群体的马赛克,在组织稳态和病理中起着特殊的作用。在这里,我们提供了一个不断扩大的成纤维细胞类型和状态纲要的全球概述,它们的不同谱系起源和在各种人体器官中的多方面功能。通过整合来自发育生物学、谱系追踪和单细胞技术的见解,我们强调了成纤维细胞的复杂性。我们深入研究了它们从胚胎间质和组织常驻种群的起源,阐明了对生理线索的反应谱系特异性行为。此外,我们强调了成纤维细胞在协调组织修复、结缔组织重塑和免疫调节中的关键作用。这些知识对于开发新的成纤维细胞靶向治疗来恢复成纤维细胞的稳态功能和推进多种疾病的再生医学策略至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信