Ambipolar Interfacial Molecule for Enhancing Performances of Perovskite Solar Cells with Versatile Architectures Under Various Illumination Environments
Min Jun Choi, Seok Woo Lee, Hongjae Shim, So Jeong Shin, Hye W. Chun, Sang Eun Yoon, Juan Anthony Prayogo, Jan Seidel, Jae Sung Yun, Dong Wook Chang, Jong H. Kim
{"title":"Ambipolar Interfacial Molecule for Enhancing Performances of Perovskite Solar Cells with Versatile Architectures Under Various Illumination Environments","authors":"Min Jun Choi, Seok Woo Lee, Hongjae Shim, So Jeong Shin, Hye W. Chun, Sang Eun Yoon, Juan Anthony Prayogo, Jan Seidel, Jae Sung Yun, Dong Wook Chang, Jong H. Kim","doi":"10.1002/aenm.202501113","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) are of significant interest for researchers as the next-generation energy harvesters. However, PSCs suffer from traps that are densely distributed at interfaces, which deteriorate the device's performance. To address this issue, a new small molecule (DTAQTPPO) capable of trap passivation on the perovskite layer surface while possessing ambipolar charge extraction properties is designed, which endow DTAQTPPO with dual functionality as both interface defect passivator and efficient hole/electron extractor in both n-i-p and p-i-n architectures. These beneficial effects improve the power conversion efficiencies (PCEs) of PSCs to 23.03% and 23.55% under 1 sun and to 37.18% and 36.29% under 1000 lux light-emitting diode (LED) indoor illuminations for both n-i-p and p-i-n architectures, respectively, after incorporating DTAQTPPO. In addition, ambipolar DTAQTPPO enhance the PV properties of PSCs using an anti-solvent-free perovskite layer with a PCE of 23.24% and indoor PCE of 35.47% under 1 sun and LED 1000 lux illumination, respectively. These results suggest that DTAQTPPO can be widely used as a multifunctional interlayer to improve the PCE of PSCs with versatile device architectures under various light illumination conditions and generality for different perovskites and processes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501113","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) are of significant interest for researchers as the next-generation energy harvesters. However, PSCs suffer from traps that are densely distributed at interfaces, which deteriorate the device's performance. To address this issue, a new small molecule (DTAQTPPO) capable of trap passivation on the perovskite layer surface while possessing ambipolar charge extraction properties is designed, which endow DTAQTPPO with dual functionality as both interface defect passivator and efficient hole/electron extractor in both n-i-p and p-i-n architectures. These beneficial effects improve the power conversion efficiencies (PCEs) of PSCs to 23.03% and 23.55% under 1 sun and to 37.18% and 36.29% under 1000 lux light-emitting diode (LED) indoor illuminations for both n-i-p and p-i-n architectures, respectively, after incorporating DTAQTPPO. In addition, ambipolar DTAQTPPO enhance the PV properties of PSCs using an anti-solvent-free perovskite layer with a PCE of 23.24% and indoor PCE of 35.47% under 1 sun and LED 1000 lux illumination, respectively. These results suggest that DTAQTPPO can be widely used as a multifunctional interlayer to improve the PCE of PSCs with versatile device architectures under various light illumination conditions and generality for different perovskites and processes.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.