Twisted geometric parametrization of holonomy-flux phase space in all dimensional loop quantum gravity

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Gaoping Long
{"title":"Twisted geometric parametrization of holonomy-flux phase space in all dimensional loop quantum gravity","authors":"Gaoping Long","doi":"10.1088/1361-6382/adcb14","DOIUrl":null,"url":null,"abstract":"The regularization of the scalar constraint and the Fermion coupling problem indicate that it is necessary to consider some kind of gauge fixing methods to deal with the simplicity constraint in all dimensional loop quantum gravity (LQG). The coherent state with well-behaved peakedness property is an essential ingredient to carry out the gauge fixing method. To provide the basic tool for constructing such kind of coherent state, we generalize the twisted geometry parametrization of the holonomy-flux phase space of -dimensional LQG from the edge simplicity constraint surface to the full holonomy-flux phase space. The symplectic structure on the twisted geometric parameter space and the Poisson structure in terms of the twisted geometric variables are analyzed. Besides, we discuss the relation between the two twisted geometry parametrizations constructed respectively on the edge simplicity constraint surface and the full holonomy-flux phase space. Our result shows that these two type of parametrizations are equivalent to each other by carrying out the gauge reduction with respect to the edge simplicity constraint.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"402 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adcb14","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The regularization of the scalar constraint and the Fermion coupling problem indicate that it is necessary to consider some kind of gauge fixing methods to deal with the simplicity constraint in all dimensional loop quantum gravity (LQG). The coherent state with well-behaved peakedness property is an essential ingredient to carry out the gauge fixing method. To provide the basic tool for constructing such kind of coherent state, we generalize the twisted geometry parametrization of the holonomy-flux phase space of -dimensional LQG from the edge simplicity constraint surface to the full holonomy-flux phase space. The symplectic structure on the twisted geometric parameter space and the Poisson structure in terms of the twisted geometric variables are analyzed. Besides, we discuss the relation between the two twisted geometry parametrizations constructed respectively on the edge simplicity constraint surface and the full holonomy-flux phase space. Our result shows that these two type of parametrizations are equivalent to each other by carrying out the gauge reduction with respect to the edge simplicity constraint.
全维环量子引力中完整通量相空间的扭曲几何参数化
标量约束和费米子耦合问题的正则化表明,有必要考虑某种规范固定方法来处理全维环量子引力(LQG)中的简单性约束。具有良好峰性的相干态是实施规定法的必要条件。为了提供构造这类相干态的基本工具,我们将六维LQG的完整通量相空间的扭曲几何参数化从边缘简单约束曲面推广到全完整通量相空间。分析了扭曲几何参数空间上的辛结构和扭曲几何变量下的泊松结构。此外,我们还讨论了分别在边缘简单约束曲面和全完整通量相空间上构造的两种扭曲几何参数化之间的关系。通过对边缘简单性约束进行规范约简,我们的结果表明这两类参数化是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信